San Joaquin River Restoration Program

Water Management Technical Feedback Meeting

Sacramento, CA

September 16, 2016

Agenda

- Introductions
- Restoration Flows
- Unreleased Restoration Flows
- Recovered Water Account Balances
- 2016 Recapture/Recirculation
- Restoration Flows Guidelines v2.0
- WMG Project Updates
- Long-term Recapture/Recirculation of Restoration Flows EIS
- Adjourn

2016 RESTORATION FLOWS

2016 Restoration Year Actions

✓ First Restoration Flows in 2+ years ✓ Provisional Allocation due to South-of-Delta water supply shortfall \checkmark Pulse flows to test juvenile salmon capture and transport ✓ Obstacles: Sand Removal, K-Rat, Mendota Pool maintenance ✓ Nearly half of allocation became URFs ✓ First flows below Sack Dam Aug 17 Recapture in lower SJR pending

2016 Restoration Year Type

Preliminary Draft, Subject to Revision

2016 Restoration Allocation

- Provisional Restoration Allocation 1/26/16:
 - 9,445 AF through February 29
 - RA schedule of 2,380 AF (extended 2/22/16)
- Full Restoration Allocations
 - 3/18/16: 261,400 AF RA schedule 129,000
 4/14/16: 276,085 AF RA schedule 144,224
 5/31/16: 266,932 AF RA schedule 135,071
 7/7/16: 270,297 AF RA schedule 131,861
- Final Restoration Allocation 10/1/2016:
 - Approximately 265,000 AF
 - RA schedule TBD

Restoration Flow Constraints

Reach 4: 70 cfs (300 cfs in late 2016)

 Due to requirement (per Settlement Act) to protect adjacent lands from damage resulting from Restoration Flows

Reach 2: 1,120 cfs

- Due to seepage and levee stability challenges in Reach 2B caused by Restoration Flows
- SJRRP Reach 2B and Mendota Pool Bypass Project will allow for full conveyance of Restoration Flows

Effects of Channel Constraints

Limits full release of Restoration Flows from Friant Dam

- Losses and diversions in Reaches 1 and 2 plus the flow that can be conveyed through Reach 2
- Constraints in Reach 4B due to potential Fresno Kangaroo Rat habitat sightings

URF Generation

- Restoration Flows that cannot be released from Friant Dam due to channel capacity constraints
- SJRRP is preparing for URFs by:
 - Completing environmental coverage
 - Securing agreements with Friant contractors to purchase/exchange URFs
 - Coordinating with Friant Dam Operations
- Managed to best achieve the Restoration Goal

2016 UNRELEASED RESTORATION FLOWS

2016 URF Sales

- Total estimated URF Volume: 139,294 19 TAF for Exchanges, 114 for Sales, 6 in Reserve
 - Tier 1:
 - 85 TAF available late March
 - \$60 / AF
 - Immediate delivery
 - Tier 2:
 - 4.5 TAF available late May (Block 1)
 - 19 TAF available in June (Block 2)
 - \$150 / AF
 - Schedulable
 - Anticipate Block 3 ~ 12 TAF (schedulable or carryover)

2016 URF Exchanges

- Reclamation wrapping up three exchange agreements
 - OCID
 - 3 TAF
 - Return to Millerton between 2018 and 2021
 - FID
 - 8 TAF
 - Return to Millerton between 2018 and 2021
 - AEWSD
 - 7 TAF
 - Return to Millerton or San Luis Reservoir between 2018 and 2021

RECOVERED WATER ACCOUNTING & BALANCES

Settlement Paragraph 16(b)

- Implement a Recovered Water Account and program "... for the purpose of reducing or avoiding the impact" of Restoration Flows
- Monitor and record reductions in water deliveries that have not been replaced or offset
- "establish a baseline condition as of the Effective Date of this Settlement with respect to water deliveries for the purpose of determining such reductions."

Reduction in Water Deliveries

- 7 Step process described in Restoration Flows Guidelines Appendix H
- Model considers:
 - Baseline w/o Restoration Flows
 - Holding contract requirements
 - Friant's ability to take flood water (Water Use Curve)
 - Flood spills that would have occurred
 - Contract amount

December 2013

	2009	2010	2011	2012	2013
TOTALS	40,755	60,192	59,732	179,313	170,561

Settlement Mitigation Tools

- Recirculation, recapture, reuse, exchange or transfer pursuant to Paragraph 16(a)
- Programs or projects undertaken or funded by a Federal or State of California Agency specifically to mitigate water delivery impacts of Restoration Flows
 - PL 111-11, Title X, Subtitle A, Part III Projects
- \$10 water pursuant to Paragraph 16(b)(2)

	2010	2011	2012	2013	2014
Recirc	49,963	35,740	100,016	44,445	41,664
RWA		431,086			
URFs					11,101

RWA Credit Transfers

- Only Friant Contractors may have RWA credits
- Can transfer credits only to other Friant Contractors
- Provide Reclamation written notification of credit transfers

RWA Balances

						San Joaq	uin Rive	Restor	ation Pr	ogram Re	ecove	red Water	Account	t Remain	ing Cred	its by Co	ontracto	r - Augu	ist 2, 201(6				
					RWA Impa	act (calculate	ed)			RWA Credi	ts Alloc	ated			Recircul	ation (-)			RWA \$10	2014 URF	Tran	sfers	RWA Credit	ts Remaining
C			2009	2010	2011	2012	2013	2014 &	Jun-10	Dec-10	Feb-11	April 2011	2010	2011	2012	2013	2014	2015	Water (-)	Water (-)	In (+)	Out (-)	calculated	allocated
Contractor						<u> </u>		2015				Advance			_/								impact	credits
Arvin-Edis	6	ע	9,063	13,386		8,966	8,528	-	18,335		343	3 84,854	9,774	1,679			2,075	15	168	474	/	16,408	15,421	96,071
Chower		\sim	4,653	6,87	1		11,726	-	9,412	-	P	47,920	5,017	4,791	=	E	\$,076		/ 3	/ ¥			(50,2	19,526)
City/		$ \rightarrow$	-	-		-8	12,792	-	-	-		7,590	-	•	_	_	5,227		- 4		\mathbf{Y}			(054)
City of I			-	-		60	533	-	-	-		316	-	•	_	5	257			- P				(297)
City of C		ve	-	-		.4	298	-	-	-		177	-	•	_	_	•							(900)
County o			-	-		15	43	-	-	-		25	-	•	_	_	•			2 P			<u> </u>	23
Delano-I		D	2,166	3,200		37	23,196	-	4,383	-	9	32,836	2,830	1,915	1	_	8,790		- - P	l N P	4,:		(14	6,203)
Exeter II		10	553	816		18	2,367	-	1,118	-		6,319	760	22	_	_	128				— (870	(2	(532)
Fresno C	J	18	-	-		34	32	-	-	-		19	-	•	_	_	-					5 –		(66)
Fresno II	5		2,181	3,221			-	-	4,412	-	1	19,201	3,000	1,928	_	_	-		\geq		<u> </u>	ĥ ⊢		1,483
Garfield)		-	-		34	746	-	-	-	-	443	-	-			356	•				< ⊢		(411)
Gravelly	7	,	407	601				-	824	-	-	3,584	5/0	360	_	_	-			┥┿┻┟		_ ⊢	(5	1,229)
Hills Va			⊢/∟	-	J		267	<u> </u>	<u> </u>	-		\	_/ L	-			127	\neg					— U	
Internati			H .	<u></u>	lau			\rightarrow		Í.	-1-		_/					\rightarrow	CO			- ⊢		(9)
Ivanhoe		P	V '	Ud	ICU	llate	2 0	\forall	Α	100	ate	ea 🌾	/ с		iro		41-1	`						1,607)
Kaweah	D	<u>u</u>	,	_				Х	_				∖ [rec		ula	ιοι		/ ── ¦		_	_'	(2	(/51)
Kem-Tu	5		A		mn	act		A	С	ror	lite	c /	\rightarrow					- F				२ ⊢		
Lewis Ci			H	-	Ξ	au		<u> </u>			41 L	_			-	-		\neg \vdash		╡╹╹╞	<u>ц</u> Ц		_	(142)
Lindmor		TD	┝─╲┍▀	943	-	~	7,050	/ - \	1,294	-	F	9 807	- 69	565	_	_	-	—V—			3,	5 —	(1	5,623)
Lindsay-		E ID	4	-	1	4	5,865	-	-	-	Ŀ	3,479	- 1	-		_	-	-		\leq				4,105
Lower 1			6,921	10,222	1	/	13,048	-	14,001	-	5	9 68,674	9,151	9,942	-	_	2,594			\leq	48,	000		0,424
Madera	2		5,409	7,989	-	2	18,122	-	10,942	-	13	58,372	7,440	4,782	-	_	3,236	32	שו	$(0)^{T}$			(50	0,884)
Drange C	1)		-	-	-	50	8,358	-	-	-	-	4,959	-	-	-	_	1,925				(レ —		8,604)
Portervii			8/2	1,288		50	5,198	-	1,/65	-	4	9,704	201	5,559	-		1,588		D F	Г М		5 –	(4)	(92)
Saucente ChaQan I			954	1,409	-	2	4,520		1,929	-	4	11,079	1,250	36	-	_	2,479		<u> </u>		()	ר ר	(15)	5 0,117
Snarter-		TTD.	1,152	1,/01	-	"	10,660		2,330	-	2	16,463	1,600	3,018	-	_	2,659				2,	200		6,736)
So San J		UD	1,454	2,14/	-	2	20,681		2,941	-	1	25,071	2,000	-	-	_	4,///				_	996	(10	2 5,676)
Stone Co		L	-	-	-	-	2,152	-		-		1,265	-	•	-	_	122			-	_			(857)
Teapo		>	-	-	-	1	1,599		•	-		949	•		_	_	-		Ľ	_ <u>P</u>	<u> </u>		<u>ل</u> ے "	(817)
Tra-Valler	F	<u> </u>	-	_ <	,	~	0,185	-			L	5,009	-	• \	\sim		5,104		$\langle \rangle$				\rightarrow	(45)
Tulare ID	\sim		4 100	6.055		5 724	6 305	-	8 204	78	6.025	30 902	5.410	3 361	3.954	2 112	41		1070	\rightarrow	$ \rightarrow $	-	(48 533	(15 720)
a mare in	TOT	ALS	4,100	60 192	50 732	170 313	170 563		82 445	77.000	50.00	7 460 000	49.963	35 740	100.016	AA AA5	41.664	47	431 096	11 101	70 274	70 274	(203 507	(33,621)
L			40,000	00,232	tot	al calculated	impacts =	510,555	tota	al allocated	credits	= 680,441	40,000	33,143	200,020	total recir	culated =	271.875	401,000	11,191	10,214	10,214	(205,507	[[35,521]

RWA True Up

- Friant Contractors to review spreadsheet and provide edits by end of October 2016
- Updates to RWA impact model methodology to be addressed in spring/summer 2017
- In the mean time, all Friant Contractors will be able to participate in URF and 16(b) water programs.

2016 RECAPTURE & RECIRCULATION

Recapture and Recirculation

- Paragraph 16(a) of the Settlement authorizes and directs the Secretary to develop a plan for recirculation, recapture, reuse, exchange, or transfer of Restoration Flows (R&R Plan) to achieve the Water Management Goal
- Constraints:
 - No adverse impact on Restoration Goal, downstream water quality or fisheries
 - Cannot adversely impact contractual obligations
 - Subject to use of CVP facilities for SOD Project water
 - Subject to COA, including any agreement to resolve conflicts

Mendota Pool Recapture

Restoration Flows Available

- Limited to flows originating at Friant Dam
- Less 5% operational loss
- Less flows conveyed past Sack Dam
- Less Exchange Contractor deliveries

Recapture Opportunities

San Joaquin Exchange Contractors

Lower San Joaquin River Recapture

Restoration Flows at Merced River Confluence

• Releases from Sack Dam minus wet-up losses in Reach 4 and Eastside Bypass

Recapture Opportunities

SAN JOAQUIN RIVER

- Patterson ID maximum ~40 cfs
- Banta-Carbona ID maximum ~65 cfs
- Limited by in-district use of facilities
- SJRRP obtained environmental coverage and temporary point of diversion
- Friant Contractors obtained agreements to cover wheeling costs

Recapture at the Delta Facilities

Restoration Flows remaining after any recapture on the lower (San Joaquin River

Recapture at CVP/SWP Pumps

- Subject to use for SOD CVP (per Settlement Act)
- Subject to USBR and DWR compliance with BiOps and D-1641 objectives
- SJRRP PEIS/R provides project-level environmental coverage

Stored 2013 Restoration Flows

Entity	Amount originally stored	Amount Available in 2016	Amount Remaining
Meyers Water Bank	1,068	768	0
CCID	2,860	2,860	0
James ID	2,753	0	2,753
Total	6,681 AF	3,628 AF	2,753 AF

Allocated pro rata to Class 1 contractors

Recaptured 2016 Flows

Month	SJRRP*	Other Transfers to Exchange Contractors
July	1,148	4,409
August	2,945	8,569
September (thru 9/11/2016)	1,065	0
Total	5,158**	12,978
Projected recapture (remaining thru 2/28/2017)	+32,000	0
* Includes 5% loss at Mendota Pool, **Allocated pro rata to Class 1 contractors	STIL.	R

RESTORATION FLOWS GUIDELINES v2.0

Process

- Kickoff Meeting Aug 23 created recommended topics for revision and prioritized tasks
- Small Workgroup will meet Oct 4 through Nov to draft specific revisions
- Version 2.0 will be approved in January 2017
- Remaining revision topics will be readdressed in Summer and Fall of 2017

Priority Revision Areas

- Forecasting
 - Exceedance % (Option 1D)
 - Merge SJRRP and SCCAO forecasting techniques
- Flexible Flow Provisions for Restoration Administrator
 - Moving flows within and between seasons (transfers within the hydrograph)
 - Test for non-impact to Friant water supply
 - Adjustment of base flows
 - Flexibility with Unreleased Restoration Flows

Other Revision Areas (2017+)

- Recovered Water Account
 - Adjust impact calculation to include URFs
 - Clarify Warren Act Contracts, non-CVP
- Gravelly Ford Flow Compliance
- Buffer Flows
- Flood Flow Management

WATER MANAGEMENT GOAL PROJECTS

Friant Kern Canal

Project on hold to determine next steps

Madera Canal

- Feasibility Report and NEPA analysis underway
- Settling Party draft October 2016
- Public Draft EA Spring 2017

- \$2.3M in drought funding announced in February 2015
- Additional \$1M drought funding announced in 2016
- Financial Assistance Agreement awarded to FWA in August 2016

Groundwater Financial Assistance

Tulare ID - Cordeniz Basin Construction & Exchange Program

- 80-acre basin
- Groundbreaking: December 2015
- Complete: May 2017

Pixley ID - Joint Groundwater Bank

- 560-acre bank with 4.5 mile pipeline to new FKC turnout
- Financial Assistance approved; Revised Draft EA early 2017

Porterville ID - In-Lieu Project

- Area 1: 1,450 acres connected to Wood-Central Ditch
- Area 2: 720 acres connected to FKC
- Financial Assistance awarded 9/15/16, Enviro. Complete

Shafter-Wasco ID - Madera Avenue Intertie

- 270-acre groundwater recharge basin at Kimberlina Rd.
- Financial Assistance in review, award date 11/2016
- Draft EA public comment period ends 9/20/16

LONG-TERM RECAPTURE AND RECIRCULATION OF RESTORATION FLOWS EIS

- Bureau of Reclamation, SJRRP
 - Kellye Kennedy, NEPA Project Manager
- CDM Smith
 - NEPA Consultant Team
 - Chris Park, Project Manager

- Initial Alternatives Under Consideration
- Preliminary Evaluation of Initial Alternatives' capacity to Recapture and Recirculate
- Next Steps and Schedule

- Reflects conditions if no further Federal action was taken to expand recapture and continue recirculation over the long-term
- Includes

 elements
 analyzed at a
 project level in
 the PEIS/R and
 other ongoing
 efforts

Adds Recirculation to the Friant Contractors via exchange and/or transfer

Alternative 3 – Maximize Use of Existing Facilities

 Adds Recapture at West Stanislaus Irrigation District, Patterson Irrigation District, and Banta Carbona Irrigation District

Alternative 4 – Expand Existing Facilities

- Improvements to expand recapture at existing local diversion facilities
- Expanded recirculation through exchanges that may require new facilities or complex agreements
- Use of local storage with CCWD or MWD

Alternative 5 – Construct New Facilities

- Development of a new facility on the Lower San Joaquin River to recapture up to 500 cfs plus the use of existing facilities (similar to Alternative 3)
- Same Recirculation as Alternative 4
- Storage in Groundwater Banks

Alternatives Development

Preliminary Evaluation of Initial Alternatives

- Criteria
 - Completeness
 - Effectiveness
 - Efficiency
 - Acceptability

Completeness

• Evaluates the degree to which each alternative addresses the recapture, recirculation and storage capacities necessary to achieve the Purpose and Need of the EIS

Effectiveness

 Measures how effective each alternative supports the recapture and recirculation of Restoration Flows.

Modeling Approach

- 1. Estimate Delta and San Joaquin River Recapture
 - Use CalSim
 - Develop monthly estimates of recapture for each alternative
- 2. Estimate available water for recirculation
 - Subtract amount to address changes in CVP and/or SWP supplies
- 3. Estimate amount recirculated
 - Spreadsheet Postprocessor (Recirculation calculator)
 - Estimates conveyance and storage capacity and monthly demands
 - Evaluates recaptured water recirculated under each alternative

- Calculate available Restoration Flows entering the Delta
- Develop constraints to simulate real operations logic
 - OMR
 - SJR IE Ratio
 - D-1641 El Ratio
 - Delta water quality
 - Surplus conditions (no recapture)
 - Use both Banks and Jones Pumping
- Develop CalSim models for each alternative

- Calculate available Restoration Flows below Merced confluence
- Develop constraints for recapture
 - Available capacity to move water from SJR to DMC
 - Available capacity in the DMC to O'Neill and/or San Luis Reservoir
 - No constraint regarding water quality (potential impacts will be analyzed in EIS to identify if modified operations are necessary)

Recirculation

- Tool includes priorities for how to recirculate the recaptured water
 - Direct delivery with FKC pumpback
 - Other direct delivery options
 - Exchanges
 - Transfers
 - Storage in San Luis Reservoir
 - Other storage
- Priorities will likely vary during implementation, these concepts helped identify if alternatives have adequate capacity

San Joaquin River Recapture

	All Years	Wet	Normal -Wet	Normal -Dry	Dry	Critical High
Total Recapture	64	53	78	69	59	25
Total Direct Delivery	64	57	76	58	56	31
San Luis Reservoir Spills	1	1	1	0	0	0

Values are average annual (in TAF)

Alternative 2 has the same values because all water can be delivered using direct delivery through Friant-Kern Canal pumpback

	All Years	Wet	Normal -Wet	Normal -Dry	Dry	Critical High
Total Recapture	89	66	107	102	85	33
Total Direct Delivery	88	72	104	97	80	50
San Luis Reservoir Spills	1	2	1	0	1	0

Values are average annual (in TAF)

	All Years	Wet	Normal -Wet	Normal -Dry	Dry	Critical High
Total Recapture	95	70	115	109	89	36
Total Direct Delivery	94	75	112	104	84	53
San Luis Reservoir Spills	1	1	2	0	1	0

Values are average annual (in TAF)

	All Years	Wet	Normal -Wet	Normal -Dry	Dry	Critical High
Total Recapture	112	81	135	131	99	45
Total Direct Delivery	111	83	134	124	98	61
San Luis Reservoir Spills	2	0	3	1	1	0

Values are average annual (in TAF)

Conclusions

- Direct delivery has adequate capacity to recirculate the recaptured water under all alternatives
 - Retain exchanges and transfers to provide flexibility for limited implementation cost
- San Luis Reservoir has adequate capacity to store water under all alternatives
 - Remove other <u>storage</u> options from further consideration

Next Steps

- Apply remaining evaluation criteria
 - Efficiency (cost)
 - Construction-related effects
 - Fisheries impacts
 - Water quality
- Complete Alternatives Evaluation and Project Description TM
 - Expected for public release in early 2017

NEXT MEETINGS

Date	Location
January 27, 2017	Visalia
April 21, 2017	Visalia
May 17/18 – Part III Workshop	Fresno/Visalia
September 15, 2017	Sacramento