

## Anticipated Future Flows – Seepage Projects

Restoration Goal Technical Feedback
Group Meeting
July 17, 2014

For Discussion Purposes; Subject to Change



#### **Agenda**

- Flowage
- SeepageManagement
- Seepage ProjectApproach





- 150 miles of River
- Historically
   Disconnected Reaches
- Water Supply Infrastructure
- Flood Control Bypasses
- Urban Areas
- Agriculture



Katrina Harrison

#### **FLOWAGE EASEMENTS**



#### **Restoration Flows**





#### **Current Flow Route**

- San Joaquin River through Reach 4A
- Eastside Bypass
- Reach 5





Turlock

Hills Ferry



#### Flowage Easements

- Eastside Bypass contains some private property
- Current flood flowage easements with the State of California
- Flowage easements with landowners who own property in the Eastside Bypass
- Reconnect the San Joaquin River
- By 2015

Katrina Harrison

#### SEEPAGE MANAGEMENT



Friant
Release
Schedule with
Fisheries
Migration
Timing

 All flows released up to "then current" channel capacities





#### **Capacity Limitations**

- Groundwater Seepage
  - Seepage Management Plan groundwater level thresholds
  - Seepage Projects
- Levee Stability
  - Hydraulic Analysis in Channel Capacity Advisory
     Group Report
  - Levee Stability Projects



#### Seepage Management

- Reduce or avoid material adverse impacts
  - Waterlogging (disease, anoxia, temperature)
  - Root zone salinity
- Goal I: Keep flows low to avoid impacts
- Goal 2: Build projects to allow higher flows





#### Seepage Management Goal I

- Limit Restoration Flow releases to avoid impacts based on groundwater seepage thresholds
  - Seepage Management Plan (SMP)
  - December 2010 through March 2011:5 public meetings
  - Peer Review in 2012
  - Peer Review findings in February 2013
  - Revisions to SMP per peer review findings in April
     2013



#### Seepage Management Plan

- Seepage impacts
- Locations of known risks
- Operations conceptual model
- Monitoring program
- Thresholds
- Triggers, site visit, and response
- Site evaluation and projects



For Discussion Purposes; Subject to Change



#### **Monitor for Impacts**

Well Top of Casing Field Well Ground Surface **Ground Surface** Over 200 (lowest point Ground Surface Adjustment shallow within 750 feet) groundwater monitoring wells Root Zone. installed by Groundwater Depth below the SJRRP ground surface at well and since 2009 Well Threshold -Irrigation Buffer Capillary Rise **Groundwater Table** and Field Threshold

Note: Not to scale



#### **Operations Conceptual Model**



 Thresholds identify potential problems so that Reclamation can establish operating criteria to manage flows



#### Seepage Approach



For Discussion Purposes; Subject to Change



#### **Current Flow Restrictions**

 4.7 foot threshold in MW-10-90 is approximately 70 cfs in the Eastside Bypass



# SEEPAGE PROJECT APPROACH



#### Seepage Management Goal 2

- Identify locations and mitigate to allow increased flows without groundwater impacts
  - Areas vulnerable to seepage; Seepage Project Handbook (SPH)
  - March 2011 through December 2011:6 public meetings
  - Periodic updates on seepage projects since April
     2012
  - Currently updating SPH based on new information



#### Seepage Project Handbook

- Introduction
- Site Evaluation
- Environmental Compliance
- Design
- Plan Formulation
- Design Data Collection
- Construction
- Financial Assistance
  For Discussion Purposes; Subject to





#### Seepage Project Approach

- Split impacted areas into seepage parcel groups
- Prioritize parcel groups
- Initiate first tier of priority parcel groups





#### **Seepage Project Process**



For Discussion Purposes; Subject to Change



#### **Priority Locations**





#### Site Evaluation Conceptual Model





#### Seepage Project Alternatives

#### Physical

- Cut-off wall (e.g., slurry walls, sheet piles)
- Seepage Plug
- Drainage ditch
- Interceptor lines
- Shallow groundwater pumps
- Buildup of low lying areas

#### Non-Physical

- Seepage easements
- Acquisition
- License Agreements



#### **Project Alternative Screening**

- Alternatives reviewed, but typically not selected
  - Sheet piles
    - Expensive compared to slurry walls
  - Seepage plug
    - Needs site dewatering, expensive, could harm levees
  - Buildup of low lying areas
    - Need proper borrow material, ag soil suitability, expensive
  - Shallow groundwater pumps
    - Expensive



#### **Project Alternative Screening**

- Alternatives typically not screened out
  - Slurry walls
  - Drainage ditch
  - Interceptor Ines
  - Pumping of existing wells to supplement other options
  - Realty Actions



#### **Seepage Project Costs**

| Seepage Project Alternative          | Unit | Estimated Initial Cost Range (\$/unit)** | Present Worth Cost<br>Range (\$/unit)** |  |
|--------------------------------------|------|------------------------------------------|-----------------------------------------|--|
| Slurry Walls                         | foot | \$1,100 - \$1,300                        | \$1,100 - \$1,300                       |  |
| Sheet Piles                          | foot | \$2,300 - \$2,600                        | \$2,300 - \$2,600                       |  |
| Seepage Plug                         | foot | \$1,900 - \$2,200                        | \$1,900 - \$2,200                       |  |
| Drainage Ditch                       | foot | \$190 - \$450                            | \$390 - \$760                           |  |
| Interceptor Lines                    | foot | \$180 - \$250                            | \$390 - \$490                           |  |
| Shallow Groundwater Pumps            | foot | \$640 - \$840                            | \$1,300 - \$1,600                       |  |
| Seepage Easements                    | acre | Based upon appraisal                     | Based upon appraisal                    |  |
| Buildup of Low Lying Areas (4-foot)* | acre | \$31,000                                 | \$31,000                                |  |
| Buildup of Low Lying Areas (7-foot)* | acre | \$58,000                                 | \$58,000                                |  |

Notes:

<sup>\*</sup>Approximately 3,000 cubic yard/acre for 4-foot buildup, and 7,900 cubic yard/acre for 7-foot buildup

<sup>\*\*</sup>Costs from preliminary designs prepared



#### **Interceptor Line – Typical Details**



Change



#### **Interceptor Line – Photos**



Drain Sump, Submersible Pump



Drain Installation



Change



#### **Next Flow Constraint – 300 cfs**



Change



#### Seepage Project Approach

- Prioritize parcel groups based on most at-risk properties
- Initiated first tier of priority parcel groups – 300 cfs in 2015
- Next 2 projects 700 cfs in 2017

| Flow      | # Projects |  |
|-----------|------------|--|
| 300 cfs   | 3          |  |
| 700 cfs   | 2          |  |
| 1,300 cfs | 6          |  |
| 2,000 cfs | 11         |  |
| 4,500 cfs | 70         |  |
| Total     | 92         |  |



#### **Seepage Projects Summary**

| Flow              | # Projects* | Site Visits<br>Performed | Targeted<br>Monitoring<br>Begun | Site<br>Evaluations<br>Begun | Preliminary<br>Designs<br>Begun |
|-------------------|-------------|--------------------------|---------------------------------|------------------------------|---------------------------------|
| >300 cfs          | 3           | 3                        | 3                               | 3                            | 3                               |
| 300 - 700 cfs     | 2           | 2                        | 2                               | I                            | I                               |
| 700 - 1,300 cfs   | 6           | 5                        | 3                               | 2                            | 2                               |
| 1,300 - 2,000 cfs | 11          | 4                        | 3                               | I                            |                                 |
| 2,000 - 4,500 cfs | 70          | ı                        | I                               |                              |                                 |
| Total             | 92          | 14                       | 11                              | 6                            | 6                               |

<sup>\*</sup>Based on initial parcel prioritization.

### QUESTIONS

#### **REALTY ACTIONS**



#### **Purpose and Objective**

- Variety of options available for groundwater seepage mitigation
- Realty Actions include:
  - Seepage License Agreements (Rentals)
  - Seepage Easements (Permanent)
  - Acquisition
- Compensate for higher groundwater levels under the property



#### **Realty Process**

- Goal: Maintain "arms-length" relationship with appraiser
- Solution: Office of Valuation Services (OVS)

- Reclamation contracts with OVS to:
  - Write a scope of work
  - Hire an appraiser
  - Review and revise the appraisal
  - Approve the appraisal for government use



#### **Land Acquisition Process**





#### **Schedule Optimization**

- Others pay for appraisals
  - Risky OVS may not approve

Landowner Relationships

Address SJRRP longevity