Agenda

1. Reach 2B Project Background
2. Project Update
3. Technical Challenges
Reach 2B Project Background

Project Background
Project Background

Existing Conditions

1. **Project Extents (Phase 1)**
 - Upstream Chowchilla Bifurcation Structure
 - D’stream Bypass Connection

2. **Ex. Structures**
 - Chowchilla Bifurcation
 - San Mateo Crossing
 - Mendota Dam
 - Water Supply Infrastructure

3. **Ex. Conditions**
 - Limited capacity (1,300 cfs – 2,500 cfs)
 - Primarily dry upstream
 - Pool backup to San Mateo Ave.
 - Shallow Groundwater

4. **Settlement Requirements**
 - Channel/Floodplain capacity of at least 4,500 cfs
 - Pool Bypass
 - Floodplain & related riparian habitat

Project Overview/Process

1. **Scoping**
2. **Alternatives Formulation**
3. **Environmental Impact Statement/Report**
4. **Detailed Design**
5. **Permitting**
6. **Land Acquisition**
7. **Construction Procurement**
8. **Construction**
Project Background
Alternatives Formulation

1. Final Scoping Report 2/28/10
3. Initial Options TM 4/2/10
4. Analytical Tools TM 10/15/10
5. 2010 Field Survey – Landowner Summaries 1/6/11
6. Final Field Survey Report 11/30/11
7. Project Description TM ongoing
Project Update

Summary of Alternatives

Bypass Alternatives

Floodplain Alternatives
Project Update
Summary of Floodplain Alternatives

Revegetation Approach:
1. Low End Option: Remove invasives
2. High End Option: Full revegetation & irrigation
Project Update

Summary of Bypass Alternatives

1. **Bypass Channel**
 - Low flow channel
 - Bankfull channel
 - Drop structures

2. **Extension Levees**
 - FP-1
 - FP-5
 - Levee removal

3. **Bifurcation Structure**
 - Bypass control structure with fish ladder
 - Pool control structure with fish screen

4. **Major Infrastructure Relocations**
 - Columbia Canal extension and siphon
 - Road 10 1/2

Project Update

Summary of Bypass Alternatives

1. **Fresno Slough Dam**
2. **Bypass Canal (Short)**
 - Pool control structure with fish screen

3. **Extension Levees**
 - FP-1
 - FP-5
 - Levee removal

4. **Mendota Dam Fish Passage**
 - Fish ladder
 - Drop structures

5. **Major Infrastructure Relocations**
 - Columbia Canal extension and siphon
 - Main Canal & Helm Ditch
Project Update

Upcoming Milestones

• Working on the Project Description for the Project EIS/R (Final Alternatives)
 – Revisions based on agency comments, TAC feedback, and recent technical analyses
 – Technical Memorandum available late Summer 2012
• Initiated Project EIS/R
 – Environmental settings written
 – Impacts analyses start Summer 2012
 – Draft Public document available Spring 2013
 – Final EIS/R available early 2014
 – ROD summer 2014
• Preliminary design underway
• Anticipated Future Milestones:
 – Property Acquisition Process beginning summer 2014
 – Construction beginning early 2016

Technical Challenges
Technical Challenges

- Grade control and sediment continuity
 - Removal of Mendota Dam
 - Grade control in the bypass
- Fish passage
 - Frequency and duration
 - Fish rock ramp concept design
- Borrow area assessment and testing
- Other Misc. Challenges (not covered today)
 - Fresno Slough Dam backwater condition
 - Alternate water delivery canals
 - Infrastructure relocation

Technical Challenges

Grade Control - Removal of Mendota Dam

- Objective:
 - To remove existing structure and need for fish passage improvements at the structure
 - To allow channel adjustment and provide sediment to R3
- Concept Features:
 - Remove Mendota Dam
 - Potentially excavate Pool sediments
 - New fish ladder at San Mateo
Technical Challenges
Grade Control - Removal of Mendota Dam

• Benefits
 – Would eliminate need for a fish passage structure at former dam location
 – Potential seepage projects due to lowered water surface elevation
 – Proposed levees between Mendota Dam and San Mateo Ave could be lower

• Impacts:
 – Would require new fish ladder at San Mateo crossing
 – Would eliminate all floodplain (vegetation and fish habitat) downstream of San Mateo crossing
 – Would require significant excavation and associated cost
 – Potential WQ and channel stability issues, which may result in the need for extensive channel erosion protection (vegetated riprap)

** Similar benefits and impacts at Compact Bypass **

Technical Challenges
Fish Passage – Frequency and Duration

• Objective:
 – To understand the timing and duration of passage windows at the various proposed structures
 – To understand which species would be able to pass the proposed structures

• Proposed Structures:
 – Chowchilla Bifurcation Structure
 – Bypass Canal Bifurcation Structure
 – San Mateo Avenue crossing
 – Compact Bypass Bifurcation Structure
 – Mendota Dam
Technical Challenges
Fish Passage – Frequency and Duration

• Analyses incorporated:
 – Historic flow records for example wet, normal wet, normal dry, and dry years
 – Flow restrictions in R2B due to Kings River floods
 – Fish swimming abilities versus hydraulic depth and velocities at structures

Technical Challenges
Fish Ladder Modifications

• Objective
 – To understand the limitations of a vertical slot ladder to pass fish under all hydraulic conditions

• Concept:
 – Modify existing ladder design to pass adult and juvenile salmonids and, when possible, other native fish.
Technical Challenges
Fish Passage – Rock Ramp Concept

• Objective:
 – To develop a structure capable of passing sturgeon and other native fish as well as salmonids

• Concept features:
 – 2-stage channel to provide adequate depth for sturgeon and low velocities for juvenile salmon
 – Multiple gates to accommodate variable hydraulic head

• Benefits:
 – Provides passage for adult and juvenile salmonids, sturgeon, and other native fish
 – Capable of operating under a wide range of hydraulic headwater and tailwater conditions
 – No need for supplemental flow
 – Can operate during gate operations (also applies to vertical slot ladder)

• Impacts:
 – Extremely long passage structure (1,000+ feet)
 – Higher cost
Technical Challenges
Soil Borrow Material

- **Objective**
 - Identify opportunities for borrow within and outside the project area.

- **Concept**
 - The overall project will need about 1.7M CY of fill
 - The following opportunities were investigated:
 - Excavation from within the project (~1.6M CY)
 - Removal of portions of existing levees (<1M CY)
 - Grading of high ground within the floodplain to further enhance floodplain connectivity (~1.5M CY)
 - Deep borrow pits areas within the project area that could be backfilled with spoil (~2.4M CY)
 - Mendota Pool excavation (<0.5M CY if an option)
 - Borrow from outside sources (~1M+ CY)

Questions?
Objective:
- Hydraulic analyses of Fresno Slough Dam and effects on water surface elevations

Concept:
- Modify dam design so upstream effects are negligible
Technical Challenges
Mendota Pool – Water Delivery Canals

• Objective:
 – To include sufficient reasonable routes for canals in the environmental documentation

• Concept:
 – Include alternate routes suggested by landowners and others
 – Conduct prelim. feasibility assessment