NOAA’s National Weather Service
California-Nevada River Forecast Center

Forecast Methods, Products, and Services for the San Joaquin River Basin

Rob Hartman
Hydrologist in Charge

Mission of NWS
Hydrologic Services Program

• Provide river and flood forecasts and warnings for the protection of lives and property.

• Provide basic hydrologic forecast information for the nation’s environmental and economic well being.
NWS River Forecast Centers

CNRFC Customers

- NWS Field Offices
- Federal Water Management Agencies
- State Water Management Agencies
- City / County Flood Control Operations
- Public / Private Utilities
Staffing

NWS/CNRFC
- Hydrologist in Charge
- DO Hydrologist
- 4 Senior Hydrologists
- 3 Hydrologists
- 1 Senior HAS Forecasters
- 2 HAS Forecasters
- 1 Information Tech. Officer
- Administrative Assistant

DWR/DFM
- Hydrology Branch Chief
- 7 Engineers/Forecasts

CNRFC Program Areas

- Flash Flood Support
- Dam Break Support
- Flood Forecasting
- Snowmelt Forecasting
- Water Supply Forecasting
CNRFC Hydrologic Modeling

Short Range ……… ……… Long Range

NWSRFS – OFS
6 hour time step
modular, deterministic

NWSRFS - ESP…………………
NWSRFS configuration
probabilistic (ensemble)

Statistical
simple, efficient, inflexible

Available CNRFC Forecasts

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Duration</th>
<th>Season</th>
<th>Frequency</th>
<th>Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood / Routine</td>
<td>5 Days</td>
<td>Year-round</td>
<td>Daily +</td>
<td>No</td>
</tr>
<tr>
<td>Ensemble Streamflow</td>
<td>User selectable</td>
<td>Year-round</td>
<td>Daily</td>
<td>Yes</td>
</tr>
<tr>
<td>Prediction</td>
<td>to 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Snowmelt</td>
<td>20 Days (4 x 5 days)</td>
<td>Early April thru snowmelt peak</td>
<td>Weekly +</td>
<td>Yes</td>
</tr>
<tr>
<td>Water Supply</td>
<td>April - July</td>
<td>January – May</td>
<td>Monthly +</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Operational River Forecasting
(Hydrology)

- **HAS River Forecast System**
 - Parameters
 - Calibration
 - Model guidance
 - Hydrologic expertise & judgment
- **Observing Systems**
- **Flood Forecast Guidance**
 - Bulletins graphics

Operational HAS Function
(Meteorology)

- **10 NWFOs**
- **NCEP - HPC**
 - Local collaboration as required
 - 3-Day Forecasts
 - Updated every 6 hours
- **HAS**
 - 5-Day Forecasts
 - (6 hour interval)
 - Precipitation
 - Temperature
 - Snow Level
- **Atmospheric Models**
- **Local Models**
- **Surface Observations**
- **Remotely Sensed Data**
Flood / Routine River Forecast Process

Preprocessing → Processing → Post-processing

- Data collection
- Data QC
- Mean Areal computations
- Run model(s)
- Make adjustments
- Move downstream
- Text Forecast
- Graphical Forecast

Preprocessing Data Collection

- California Cooperative Snow Survey
- State & Local Resource Management Agencies
- Bureau of Reclamation
- Corps of Engineers
- California Data Exchange Center
- AWIPS text products
- NRCS (SNOTEL)
- ASOS
- 11 WFOs (ALERT)
- ALERT Reception
- Domsat (GOES)
Preprocessing
Data Quality Control

- Precipitation
- Surface air temperature
- River stage and discharge
- Reservoir elevations and storage

Preprocessing
Rating Table Management

- DWR CDEC
- USGS NWIS
- LDAD
- ascii tables (ap11)
- WFOs
- IHFSDB
- NWSRFS

automatically sent
ftp request
ftp request
processing (load)
exports
storage retrieval
Preprocessing
Scheduled Reservoir Releases

- Reservoir Operators
- River Modeling System
- Forecasters

future path

traditional path

Processing
NWSRFS Operations (Models)

- Rain-Snow Elevation
- Snow-17
- Soil Model (SAC-SMA)
- Unit Hydrograph
- Reservoir Models
- River Routing Models

- Lumped (not distributed)
- Mountainous basins
 - Subdivided into
 - Upper / Lower
 - Upper / Middle / Lower
CNRFC’s NWSRFS Implementation

- 250+ simulated watersheds
- ~90 flood forecast locations
- ~50 reservoir inflow locations

- Model time step = 6 hrs
 - Hourly discharge observations used in routings
- Routine forecast duration = 5 days
- Updates: every 6 hours during flood events

Upper San Joaquin Configuration
Lower San Joaquin Configuration

Processing

Forecaster Experience

- Watershed characteristics
- Model idiosyncrasies
- Data and gage issues
- Customer and partner needs
Post-processing
River Guidance (Flood Forecast Points)

- ~90 locations
- Updated w/each model run
 - 2x / day winter weekdays
 - 1x / day summer weekdays and weekends
 - 4x / day during flood events

(www.cnrfc.noaa.gov)
Post-processing

River Guidance (Flood Forecast Points)

- Graphical
 - +/- 5 days
 - Obs + Forecast + Guidance
- Available
 - CNRFC Website
 - CDEC Website
- Interpretation
 - Online help
 - 1 page flier

(www.cnrfc.noaa.gov)

Post-processing

River Guidance - Verification

- +/- 5 days
- Observed and Forecast
 - precipitation
 - streamflow
- Select by
 - date
 - next/previous
 - looping
- Available
 - All flood forecast locations
 - CNRFC Website
- Interpretation
 - Online help
- All since Fall 2003
Post-processing

River Guidance (Flood Forecast Points)

- Text
 - New format this year
 - Issued with each model run
 - + 5 days
 - Summary table and shelf encoded data
- Available
 - CNRFC Website
 - CDEC Website
- Basis of WFO issued flood warnings
- Issued for 10 areas
- Same frequency as graphics

Post-processing

River Guidance (Other Points)

- ~80 Non-flood locations

(www.cnrfc.noaa.gov)
Post-processing
River Guidance (Other Points)

- Generated during normal forecast process
- Various uses
- Same format as flood points

(www.cnrfc.noaa.gov)

Post-processing
River Guidance (Reservoir Inflows)

- 50 Reservoirs
- Restricted access
- Same format as river locations
- Updated w/ each model run
- Tabular data sent directly to operators
Ensemble Streamflow Prediction

- Use same forecasting infrastructure as Flood/Routine forecasts (NWSRFS)
 - Same models, observed data, model states
- Modeling system run with multiple scenarios of future precipitation and temperature
 - Scenarios are
 - Spatially and temporally coherent
 - Equally likely
- Resulting streamflow scenarios form a set that can be statistically sampled and analysed

Ensemble Streamflow Prediction
ESP Product Generation

- Significant flexibility
 - User selectable time aggregation
 - 6 hrs to 1 year
 - User selectable window
 - Days, weeks, months or multiples thereof
 - Information on
 - Peaks
 - Number of days to critical thresholds (e.g. Flood Stage)

Sample ESP Products
CNRFC Ensemble User Interface

- “Create Your Own”
- Ensembles run nightly
- Assumes knowledgeable user
- Online help and interpretive tools available

20-Day Spring Snowmelt Forecasts

- Issued on Wednesdays
 - Early April through the peak
 - Updates as requested
- Four 5-Day volume periods (20 days total)
 - 90%, 50%, 10% exceedance volumes (KAF)
- 1st period – primary use of single value forecast with QPF and forecast temperatures
- 2nd – 4th periods – primary use of ESP tools with blending of QPF and temperature forecasts into climatology
- 27 locations, 21 include peak forecasts

(www.cnrfc.noaa.gov)
20-Day Spring Snowmelt Forecasts
(www.cnrfc.noaa.gov/products/snowmelt/snowmelt.pdf)

CNRFC Statistical Water Supply (SWS) Modeling

- Topics
 - Comparison of SWS and ESP attributes
 - Overview of CNRFC SWS environment
 - CNRFC SWS data requirements
 - CNRFC SWS calibration program and approach
 - CNRFC Operational process
 - Review of CNRFC Millerton Lake procedures
 - Description of CNRFC Water Supply products and locations
Statistical Models vs. Ensemble Techniques

- **Statistical Models**
 - Low data requirement
 - Easy to calibrate and maintain
 - Perform better for seasonal volume forecasts
 - Inflexible (use/output)
 - May have difficulty in extreme years
 - Difficult to integrate weather and climate forecasts
 - Dominate model in the past

- **ESP Techniques**
 - High data requirement
 - More difficult to calibrate and maintain ($$)
 - Perform better for partial season forecasts
 - Flexible (use/output)
 - Should work reasonably well in extreme years
 - Easier to integrate weather and climate forecasts
 - Dominate model in the future

CNRFC SWS System Design

- **Relational Database**
 - Station characteristics
 - Historical observations
 - Real-time observations
 - Equations
 - Stations and coefficients
 - Historical performance

- **Programs**
 - Calibration Programs
 - Maintenance Programs
 - Operational Programs
CNRFC SWS Data Requirements

- Types
 - Adjusted monthly streamflow
 - Account for affects of diversions and reservoirs
 - Useful as a carryover term in some areas
 - Monthly precipitation
 - Snow course/pillow observations
 - Other
 - Climatic indexes, etc.

CNRFC SWS Calibration Program

- Developed by USDA/NRCS in late ‘80s
- Up to 49 “independent” variables
- Dependent variable transformation
- Principal components analysis (PCA)
- Cross validation standard error
- Combination analysis
- Yields “best” 20 equations (lowest CVSE)
SWS Calibration Approach

- Equations developed for each forecast month
 - Care taken to keep stations as consistent as possible from month to month
- No use of “future” data
 - Causes non-optimal coefficients (weights)
- Balance lower errors with good spatial distribution of stations
 - Attempt to introduce “some” hydrology
- Equations can be used in a mid-month mode
 - Estimate %normal to date and assume %normal to EOM
 - Use next month’s equation

CNRFC Operational SWS Forecasting Process

- Monitor and quality control incoming data
- Run equations and make adjustments
 - Compare with ESP information
- Coordinate forecasts with other agencies
 - NRCS in Nevada and Southern Oregon
 - Comparison with CA DWR in California
- Publish forecasts on Internet
Statistical Procedures for San Joaquin – Millerton Lake Inflow

- All forecasts are for April – July volume
- Maps of precipitation and snow course stations used in equations
- Monthly progression of SE and CV
- January 1 through May 1 equations
 - Scatter plots
 - Precipitation and Snow Courses used

Utilized Snow Courses
Utilized Precipitation Gages

Monthly Standard Errors

San Joaquin – Millerton Lake Inflow (Apr-Jul)
Monthly Coefficient of Variation
(Standard Error / Average)

San Joaquin - Millerton Lake Inflow (Apr-Jul)

- JAN 1
- FEB 1
- MAR 1
- APR 1
- MAY 1

CV

January Equation (Millerton, Apr-Jul)

- Standard Error = 636 KAF
- December Precipitation
 - Gem Lake
 - South Entrance YNP
 - Auberry
 - North Fork Ranger Station
February Equation (Millerton, Apr-Jul)

- Standard Error = 376 KAF
- Dec-Jan Precipitation
 - Auberry
 - North Fork Ranger Station
- Feb 1 SWE
 - Lake Thomas Edison
 - Rock Creek 1
 - Rock Creek 2

March Equation (Millerton, Apr-Jul)

- Standard Error = 276 KAF
- Dec-Feb Precipitation
 - Auberry
 - North Fork Ranger Station
- Mar 1 SWE
 - Gem Pass
 - Mono Pass
 - Piute Pass
April Equation (Millerton, Apr-Jul)

- Standard Error = 155 KAF
- Dec-Mar Precipitation
 - Auberry
 - North Fork Ranger Station
- Apr 1 SWE
 - Gem Pass
 - Mono Pass
 - Piute Pass
 - Cora Lakes
 - Lake Thomas Edison
 - Rock Creek 2
 - Mammoth Pass

May Equation (Millerton, Apr-Jul)

- Standard Error = 59 KAF
- Dec-Apr Precipitation
 - Auberry
 - North Fork Ranger Station
- Apr 1 SWE
 - Gem Pass
 - Mono Pass
 - Piute Pass
 - Cora Lakes
 - Lake Thomas Edison
- May 1 SWE
 - Huntington Lake
 - Kaiser Pass
 - Badger Flat
 - Beard Meadow
CNRFC Water Supply Products and Services

- CNRFC Monthly Water Supply Outlook
 - www.cnrfc.noaa.gov/products/water_supply

- Westwide Water Supply Outlook
 - www.cbrfc.noaa.gov/wsup/westwide/westwide.cgi

- Western Water Supply Website
 - www.nwrfc.noaa.gov/westernwater

CNRFC Monthly Water Supply Outlooks

[Water Supply Outlook](#)

[Water Supply Forecasts](#)

www.cnrfc.noaa.gov/products/water_supply
Westwide Water Supply Forecasts

- Current and archive ('95 on) of:
 - Monthly/Seasonal Precipitation
 - Snow water
 - Snow cover (satellite)
 - Reservoir storage
 - Streamflow forecasts

www.cbrfc.noaa.gov/wsup/westwide/westwide.cgi

Western Water Supply Website

- Stat-based forecasts
 - Monthly progression
- ESP-based forecasts
 - Monthly break-downs
- Verification information
- More...
- All points in Western US
 - Expanding Nation-wide

www.nwrfc.noaa.gov/westernwater
Changes Are Coming!

- CHPS (Community Hydrologic Prediction System) to replace NWSRFS
 - Service oriented architecture
 - Delft FEWS + NWS models + custom development
 - Easier to integrate external models
 - Deployment at CNRFC underway now!
 - Massive migration effort
 - Started parallel operations in October 2009
 - Fully operational before October 2010
 - Fully operational across US by October 2011
- See website NEWSLETTER for details…
Changes Are Coming!

- Hydrologic Ensemble Forecasting System
 - PROBABLISTIC FORECASTS
 - Short (hours), Medium(days), Long(weeks/months)
 - Requires CHPS
 - Many years in prototype development
 - Partial operational deployment planned for WY11

 - See website NEWSLETTER for details…

Future CNRFC Hydrologic Modeling

- Short Range … … … … … … Long Range

 - CHPS
 - 1-6 hour time step
 - Single value

 - HEFS…………………….................................
 - probabilistic (ensemble-based)

 Statistical
 - simple, efficient, inflexible