Juvenile Survival and Migration

August 2013

SAN JOAQUIN RIVER

1.02013 Juvenile Salmonid Survival and Migration (Preliminary Report)

1.1 Introduction

The Fisheries Management Plan of the San Joaquin River Restoration Program (Program) (FMWG 2010) sets population goals for Chinook salmon (Oncorhynchus tshwaytscha) to achieve the Restoration Goal for the Program. The Fisheries Implementation Plan (FIP) (FMWG 2010b) prioritized studies to address information needs to evaluate the Restoration Area for various fisheries needs. The FIP identified a study of juvenile salmonid migration and survival as a high priority for Interim Flows prior to the reintroduction of salmon, which is required by the Stipulation of Settlement by December 31, 2012 (NRDC vs. Rodgers 2006).

This study was designed to provide information of survival of juvenile Chinook salmon during their spring downstream migration through the restoration area. Stationary telemetry receivers were deployed to assess survival through mining pits, at unscreened diversions, and in both bypasses and the river channel in all available reaches (1-5) of the Restoration Area, as well as downstream past the lowest SJR tributary (the Stanislaus River).

Preliminary results of the third year of acoustic tracking of juvenile Chinook salmon are described in this report. At the time of submission, one final data download covering 2013 is still pending. These preliminary results to not include environmental data including temperature and flow data during the study period. A final report will be submitted in the December Monitoring and Assessment Plan that will incorporate the environmental variables.

1.2 Methods

1. Receiver Deployment. Receiver deployment was based on the following criteria: potential to address appropriate limiting factors (predation, entrainment, habitat), ability to access deployment sites, and risk of vandalism. Receivers were deployed at the locations outlined in Table 1 below. Receivers were cabled to existing woody vegetation and/or structures available on the bank using 3/8 inch stainless steel cable. Concrete block anchors were used to weight the receivers, buoys were cabled to the anchors on approximately 3 feet of cable. The receiver was attached to the cable using hose clamps and suspended in the water column.

Table 1. Receiver Locations for 2013 acoustic tracking of juvenile Chinook salmon through the SJRRP

3. Technology. VEMCO VR2W-180khz receivers were used and in 2013, we used V-5 acoustic transmitters, replacing the V-6 transmitters used in 2011 and 2012. . VR2W-180 khz receivers have a detection range of approximately 75 m . V-6 tags weigh 0.5 grams in air and can be used on fish > 10.0 g , to adhere to a maximum of 5% body weight tag burden (Adams et al 1998).
4. Source Fish. Juvenile fall run Chinook salmon from the Feather River Hatchery were used in this study. Feather River fall run are the earliest returning fall run and provided the best opportunity to get fish to the appropriate size for acoustic tracking at the earliest date. On March 18-20 ${ }^{\text {th }}$, 2013 staff from the US Fish and Wildlife Service hand sorted, and coded wire tagged approximately 1750 fish
from the Feather River Hatchery raceways, and transported them to the holding pens in the San Joaquin River. The transport tank was filled with pumped water from the facility and temperature and dissolved oxygen were closely monitored. Dissolved oxygen was kept at or above saturation. Fish were transported from the Feather River facility to the San Joaquin Interim Conservation Facility located at the San Joaquin River Hatchery complex in a 500 gallon double-walled insulated aluminum tank No mortalities were attributed to transport and handling stress.
5. Surgery and Fish Release. Fish were held in aluminum plate holding pens suspended using rotary screw trap pontoons in the pool below Friant Dam. Because no fish were large enough to support tag weight at the time of collection, fish were held until April $15^{\text {th }}$ (weekly length/weight checks were conducted by CDFW staff to update us on size). On April $15^{\text {th }}$, the first fish were sorted and fish large enough were implanted with an acoustic tag. We continued this process of weekly checking, and tagging fish as they reached size until the last group was tagged on May $6{ }^{\text {th }}$.(Table 1).

Table 1. Tag/Release Dates and Locations for 2013 Chinook Salmon Survival Studies in the SJRRP.

Tag Date	Release Date	Release Location	Number of Tagged Fish	Number of Pilot Fish	Temperature	Flow
$4 / 16 / 2013$	$4 / 17 / 2013$	Below Friant	47	200	11.8 C	1060 cfs
$4 / 16 / 2013$	$4 / 17 / 2013$	Below Hwy 165 (REACH 5)	47	200	16.7 C	150 cfs (Fremont Ford)
$4 / 23 / 2013$	$4 / 24 / 2013$	Below Friant	200	400	10.4 C	1060 cfs
$4 / 24 / 2013$	$4 / 25 / 2013$	Below Friant	100	400	1060 cfs	
$4 / 29 / 2013$	$4 / 30 / 2013$	Below Friant	121	300	1060 cfs	
$4 / 30 / 2013$	$5 / 1 / 2013$	Below Friant	121	300	10.3 C	10.2 C
$5 / 6 / 2013$	$5 / 7 / 2013$	Below Friant	75	225	10.2 C	500 cfs
			$\mathbf{7 1 1}$	$\mathbf{2 0 2 5}$		

7. Receiver Downloads. Deployed receivers recorded the identification number and time stamp from the coded acoustic transmitters as tagged fish traveled within the detection range, estimated to be 75 m . Data were downloaded monthly in the field using a wireless personal computer interface in May, June and July. Data collection is still ongoing.
8. Mobile Tracking. Mobile tracking was conducted during Predator Study sampling throughout the mine pit habitat. The river channel was also sampled on May 6, 7 from Friant Dam downstream through Reach 1.
9. Data Summary. Receiver downloads are not yet complete. Data will be summarized by release date and release location. Temperature and Flow during releases will be analyzed, as well as the development of survival rates and movement rates through the system.

1.3 Results - will be prepared for the December ATR

1.4 Discussion - December ATR

1.5 Conclusions and Recommendations- December ATR

Contact information for principle investigator:
Michelle Workman, michelle_workman@fws.gov

1.6 Contact information for principle investigator:

Michelle Workman, michelle_workman@fws.gov

1.7 References

Adams NS, Rondorf D, Evans S, Kelly J, Perry R (1998) Effects of surgically and gastrically implanted radio transmitters on swimming performance and predator avoidance of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 55:781-787

FMWG. 2010. Fisheries management Plan: a framework for adaptive management in the San Joaquin River Restoration Program. 147 pages plus appendices.
[FMWG]. 2010b. Fisheries Implementation Plan. Prepared for the San Joaquin River Restoration Program.

NRDC vs. Rodgers, et al. 2006. Stipulation of Settlement. 80pp.

