RECLAMATION

Managing Water in the West

Hydraulic modeling and habitat analysis of existing conditions within the San Joaquin River

Project Objective

Estimate available Salmon habitat using relevant biological parameters and modeled hydraulic conditions under the current geomorphic and vegetative state of the system.

Milestone Objective

Develop an understanding of proposed methodology and present initial results from assessment of juvenile rearing habitat.

Work Flow

- 1. Collect data to document the current state of the system
 - o Aerial Imagery
 - o LiDAR
 - o Hydrographic surveys
 - o Hydrology
- 2. Predict hydraulic conditions within each river reach
 - o Build two-dimensional computational models of each reach
 - o Simulate hydraulics for each flow rate stipulated in settlement
- 3. Estimate rearing habitat within each river reach
 - o Define biologically-relevant habitat criteria
 - o Calculate habitat for each set of hydraulic simulation results and habitat criteria

RECLAMATION

Hydraulic Modeling: SRH-2D Lai, J. Hydr. Eng., 2009

- Solves the depth-averaged Navier-Stokes equations
- Produces two-dimensional (x,y) mean flow field and water depth
- Bed shear stresses calculated via Manning's Resistance
- Apparent (Reynolds) stresses parameterized using Boussinesq formulation and eddy viscosity
- Wetting-drying algorithm updated for each solution time step

Hydraulic Modeling Results

Computations provide spatially distributed information:

- Area of inundation
- Water depth
- Flow velocity

Results from hydraulic modeling of each reach, flow, and levee alignment option are used to inform habitat assessment.

RECLAMATION

Habitat Assessment

Objective:

Map observable physical variables (e.g., depth, velocity, geomorphic & vegetative characteristics) to a quantitative metric of habitat quality for a given species

Dependency:

Need a functional relationship between physical variable and habitat quality based on field observations

Hydraulically Suitable Habitat (HSH)

- Map the depth suitability and velocity suitability habitat criteria (DSHC & VSHC) to each wetted element within the 2D hydraulic model solution
- Compute the hydraulic suitability habitat criteria: $HSHC = \sqrt{(DSHC \cdot VSHC)}$
- Classify the HSHC distribution:

HSHC = 1 "hydraulically-suitable habitat"

HSHC = 0 "non-suitable habitat"

Repeat for varying hydraulic and geomorphic conditions

		(acre	es)		
Reach	Levee Option	TIA (ac)	HSH (ac)	Suitable Habitat (ac)	
				Full Cover	Edge Cover
1B		630	255	152	37
2A		561	299	34	27
2B	FP2	476	186		
	FP4	531	207		
	Existing	535	271		
3		431	107	72	31
4A		320	115	37	13
4B1	A	1024	526		
	В	2287	1119		
	C	3583	1820	4	
	D	5558	2558		
4B2		703	303	135	31
5		823	350	156	35

	(Trac	tion	of TI	A)	
Reach		TIA (ac)	HSH (frac)	Suitable Habitat (frac)	
	Levee Option			Full Cover	Edge Cover
1B	100	630	0.40	0.24	0.06
2A		561	0.53	0.06	0.05
2B	FP2	476	0.39		
	FP4	531	0.39		
	Existing	535	0.51		
3		431	0.25	0.17	0.07
4A		320	0.36	0.12	0.04
4B1	A	1024	0.51		
	В	2287	0.49		
	C	3583	0.51		
	D	5558	0.46		
4B2		703	0.43	0.19	0.04
5		823	0.43	0.19	0.04

		(acro	es)		
Reach	Levee Option	TIA (ac)	HSH (ac)	Suitable Habitat (ac)	
				Full Cover	Edge Cove
1B		756	294	156	38
2A		675	305	32	25
2B	FP2	1163	456		
	FP4	1486	618		
	Existing	728	295		
3		696	236	161	25
4A		390	121	34	10
4B1	A	1124	755		
	В	2829	1897		
	С	5422	3061		
	D	7509	4318		
4B2		1033	455	125	36
5		1373	603	165	47

	(II ac	(fraction of TIA)					
Reach		TIA (ac)	HSH (frac)	Suitable Habitat (frac)			
	Levee Option			Full Cover	Edge Cove		
1B	100	756	0.39	0.21	0.05		
2A		675	0.45	0.05	0.04		
2B	FP2	1163	0.39				
	FP4	1486	0.42				
	Existing	728	0.41				
3		696	0.34	0.23	0.04		
4A		390	0.31	0.09	0.03		
4B1	A	1124	0.67				
	В	2829	0.67				
	C	5422	0.56				
	D	7509	0.58				
4B2		1033	0.44	0.12	0.03		
5		1373	0.44	0.12	0.03		

		(acro	es)		
Reach	Levee Option	TIA (ac)	HSH (ac)	Suitable Habitat (ac)	
				Full Cover	Edge Cove
1B		930	316	127	36
2A		807	309	35	27
2B	FP2	1553	945		
	FP4	1972	1174		
	Existing				
3		953	358	157	35
4A		485	127	27	7
4B1	A	1042	336		
	В	2914	2273		
	С	5996	4149	4	
	D	8920	5862		
4B2	9, 13, 1	1428	646	110	36
5		2192	1257	214	70

	(frac	tion	of TI	A)	
Reach	Levee Option	TIA (ac)	HSH (frac)	Suitable Habitat (frac)	
				Full Cover	Edge Cover
1B		930	0.34	0.14	0.04
2A		807	0.38	0.04	0.03
2B	FP2	1553	0.61		
	FP4	1972	0.60		
	Existing				
3		953	0.38	0.16	0.04
4A		485	0.26	0.06	0.01
4B1	A	1042	0.32		
	В	2914	0.78		
	С	5996	0.69		
	D	8920	0.66		
4B2		1428	0.45	0.08	0.03
5		2192	0.57	0.10	0.03

SH for Water Year Types (Edge Cover Definition) Flows (cfs) Dry Normal Wet Reach Levee Option 1000-1500 2180-2500 3600-4500 1B 27 25 27 2A FP2 2B FP4 Existing 31 25 35 10 4A В 4B1 D 4B2 **RECLAMATION**

Discussion

- Hydraulic modeling demonstrates that in the constrained (leveed) reaches, greater flows do not necessarily produce more habitat.
- Results of habitat assessment indicate sensitivity to how cover is defined, and suggests utility in strategic placement and modification of cover features.
- Combined analyses suggest that habitat area can be efficiently improved by increasing the coincidence of cover features with area of hydraulically-suitable conditions.

RECLAMATION

Limitations & Uncertainties

- How well do the habitat suitability curves for depth (DHSI) and velocity (DHSI) represent the habitat dependency on hydraulic conditions within the San Joaquin system?
- How best to quantify geomorphic and vegetative cover for use in the habitat analysis?
- How would temperature modeling effect the predicted suitability of habitat?
- Currently, productivity processes and connectivity of habitat are not considered.