

Agenda 1. Introductions 2. **Program Restoration Goal Context** Program Update Interim Flows EIS/EIR b) Mendota Pool Bypass/Reach 2B Project **Existing Conditions Review** b) Schedule & Upcoming Milestones **Initial Options** Objective and Focus Explanation Floodplain Options iii. Pool Bypass Options iv. Pool Bifurcation Structure Options Analytical Tools for Alts. Evaluation **Objective and Focus Explanation** Fisheries Geomorphology Groundwater

Program Restoration Goal Context

- Settlement Restoration Goal
 - Restore and maintain fish populations in good condition in the main stem San Joaquin River below Friant Dam to the confluence of the Merced River, including naturally-reproducing and self-sustaining populations of salmon and other fish
 - Foundation of all of the site-specific projects
 - Focus is currently on spring-run and fall-run Chinook salmon and Central Valley steelhead
 - Likely surrogates for other native species
 - Each site-specific project contributes to meeting the fundamental life-history needs of these species

Program Update

Program EIS/R

- Draft PEIS/R under preparation
 - Public Release targeted for June 2010
 - 60-day comment period
 - Public hearings (dates/locations to be determined)
 - Final PEIS/R
 - Late 2010
 - Record of Decision
 - Early 2011

Check the website at www.restoresjr.net for updates.

Analytical Tools for Alts. Evaluation - Objective

- · Analytical tools needed to
 - evaluate the initial alternatives
 - formulate a final set of alternatives, and
 - evaluate those alternatives in the EIS/R
- Tools should assess:
 - relative ability of the alternatives to meet the Project's purpose and need, goals and objectives;
 - the physical, economic, and environmental effects of the alternatives; and
 - the fisheries impacts and benefits of each alternative

Analytical Tools for Alts. Evaluation

Fish Passage and Habitat

- » Approach
- » Evaluation Criteria
- » Tools to Quantify Criteria

Fish Passage and Habitat

Approach

- Objectives:
 - Address migration and habitat use goals of the Reach 2B Project
 - Compare passage and habitat conditions between initial alternatives using specific criteria
- Evaluate initial alternatives based upon:
 - Fish passage conditions
 - Within San Joaquin River channel
 - · At artificial structures
 - Mendota Pool Bypass drop structures
 - San Mateo Ave crossing
 - Chowchilla and Mendota Pool bifurcation structures
 - Rearing habitat conditions for spring- and fall-Chinook, CV steelhead and other native fishes
 - In-channel rearing habitat
 - · Floodplain rearing habitat

Passage Evaluation Criteria

- In San Joaquin River channel
 - Passage velocity: percent of range of flows meeting passage criteria
 - Passage depth: length and width of channel meeting depth passage criteria
 - Temperature: # of days of suitable water temperature
- At artificial structures
 - Minimum fish passage requirements (NMFS 2008)
 - Evaluate structure ability to meet jump, velocity, depth, and entrance and exit conditions
 - Total number of structures fish must pass

Rearing Habitat Evaluation Criteria

- In-channel rearing
 - Channel dimension: width and depth
 - Habitat features: pools and bars
 - Length of bordering riparian vegetation
- Floodplain rearing
 - Depth: area within specified range
 - Floodplain area: width per channel length
 - Inundation duration and periodicity (# floods/yr)
 - Potential for floodplain features: ponds, secondary channels, vegetation types

Fish Passage and Habitat

Rearing Habitat Evaluation

- In-channel rearing
 - Physical habitat criteria from literature (depth, velocity, temperature)
 - Qualitative evaluation of channel condition using literature description/values compared to expected habitat conditions
- Floodplain rearing
 - Physical habitat criteria from literature (depth, velocity, temperature)
 - Area of frequently activated floodplain
 - Smallest flood pulse that initiates beneficial ecological processes (Williams et al. 2009)
 - River stage that occurs 2/3 years, 7 day duration, mid-March to mid-May
 - Qualitative evaluation based upon
 - · Area of potentially beneficial floodplain features
 - Area of inundated riparian vegetation and vegetation types

Analytical Tools for Criteria Quantification

- Tool Descriptions:
 - HEC-RAS with daily flow data
 - SRH1-DV: vegetation model
 - HEC-5Q: Temperature model
 - Geomorphic analyses

Analytical Tools for Criteria Quantification

- Fish passage:
 - In-channel
 - HEC-RAS
 - Flow depth and velocity at cross-sections
 - Length of channel meeting depth and velocity criteria
 - HEC-5Q: water temperature during migration
 - Structures
 - HEC-RAS
 - Flow depth and velocity at structure
 - NMFS (2008) criteria
 - Ground surveys and literature review: # of structures along migration route

Fish Passage and Habitat

Analytical Tools for Criteria Quantification

- Rearing habitat:
 - In-channel
 - HEC-RAS: channel width and depth
 - SRH-1DV: length of vegetated bank
 - · Geomorphic analyses: potential habitat
 - Floodplain
 - HEC-RAS and daily flow data: acreage by depth, inundation duration and periodicity
 - SRH-1DV: acreage of vegetation types
 - LiDAR & Geomorph analyses: area of floodplain features

Fish Passage and Habitat			
Summary			
Criteria	Metric	Tools	
Passage conditions in the channel	Length of proposed channel	HEC-RAS	
Water temperature during migration	Days meeting criteria during migration periods	HEC-5Q	
Passage conditions at structures	Jump height, velocity, depth of flow	Fish passage criteria	
Number of artificial structures in migratory path	Number of structures in migratory path		
In-channel habitat including riparian habitat	Pool: bars, average width and depth of active channel, average depth of flow, length of banks with woody riparian vegetation	HEC-RAS, geomorphic analyses, SRH-1DV	
Floodplain inundation depth, area, duration and periodicity	Floodplain acreage by depth range	HEC-RAS, daily flow data, frequency duration curves	
	Floodplain inundation duration		
	Floodplain inundation periodicity (average number of events per year, period between events)		
Floodplain habitat based on floodplain features	Acreage of different features	SRH-1DV, geomorphic analyses	
	Acreage of riparian types	SRH-1DV	

General Approach

- What is the Expected Response of the River to Restoration Flows?
- How do the Initial Alternatives Interact with Expected River's Response?
- Refine the initial alternatives such that long-term channel stability is encouraged and the required habitat features are supported

Approach

- Apply Geomorphic Principles
 - Analog
 - Historical aerials
 - · River's response to Interim flows
 - Empirical
 - Geomorphically significant flows and the most effective discharge
 - Active channel width, equilibrium slope and depth
 - Planform geometry
 - Bed forms
- Predict the Expected Future Stable Channel Configuration
 - Including range of variance

Geomorphology

Approach

- Perform Analytical Assessment
 - Evaluate sediment continuity:
 - Predict river's response to sediment load from Reach 2A
 - Evaluate meander development and lateral migration tendencies
 - Evaluate meander cutoff potential
 - Evaluate erosion potential of outer banks at meander bend
- Evaluate Long-Term Stability
 - Incorporates vegetation growth

Approach

- Predict River's response to Restoration Flows
 - Combine results from geomorphic and analytical assessment
- Overlay initial alternatives
 - With proposed structures
- Evaluate how the initial alternatives interact with the expected River's response
 - Allow or inhibit geomorphic process
 - Allow or inhibit fish habitat features

Geomorphology

Evaluation Criteria

- Potential to reach a stable channel configuration in dynamic equilibrium
- Potential to accommodate meander migration
- Potential for pool/bar formation
- Potential to develop floodplain topographic features

Analytical Tools for Criteria Quantification

- Geomorphic Tools
 - Effective discharge
 - Analog data
 - Empirical relationships
- Analytical Tools
 - HEC-RAS
 - SRH-1D
 - SRH-1DV
 - Bank stability equations

Summary			
Criteria	Metric	Tools	
Potential to reach a stable channel configuration in dynamic equilibrium	Qualitative scale from 1 to 10	Flow duration curve HEC-RAS SRH-1D Geomorphic principals Bank stability indices	
Potential to accommodate meander migration	Qualitative scale from 1 to 10	Flow duration curve HEC-RAS SRH-1D Geomorphic principals Bank stability indices	
Potential for pool/bar formation	Qualitative scale from 1 to 10	Flow duration curve HEC-RAS SRH-1D Geomorphic principals Bank stability indices	
Potential to develop floodplain features	Qualitative scale from 1 to 10	Geomorphic principals HEC-RAS	

Analytical Tools for Alts. Evaluation

Groundwater

- » Approach
- » Evaluation Criteria
- » Tools to Quantify Criteria

Groundwater

Approach & Evaluation Criteria

- Approach (Draft Seepage Management Plan 12/09)
 - Issues
 - Water logging of crops
 - Draft thresholds in Seepage Mgmt Plan (depth to water that would impact crops)
 - Reach 2B is losing reach
 - Mendota Pool portion may have less seepage if pool is drained
 - Root Zone Salinity (thresholds established, but doesn't require modeling)
 - Levee Instability (design criteria)
 - Mitigation: measures are identified in SMP for postconstruction problems
- Evaluation Criteria Impacts
 - Acres of waterlogging (indicator of root zone salinity)

