DRAFT Technical Memorandum

Locations of Potential Seepage Risks

Study: Locations of Potential Seepage

2 Risk

3 San Joaquin River Restoration Program

- **4 Version History**
- 5 2011.03.20 Initial outline and draft components for discussion at Seepage and Conveyance
- 6 Technical Feedback Meeting on March 23, 2011.

7 1. Introduction

- 8 This study will screen for potential locations of seepage risk based on land elevation and
- 9 predicted water surface up to 4500 cubic feet per second (cfs), to allow full Restoration Flows.
- 10 Seepage management includes real-time management of flows to reduce or avoid material
- adverse seepage impacts, as well as implementation of projects to increase capacity outside of
- site-specific projects, as part of Paragraph 12 in the Stipulation of Settlement (Settlement) in
- 13 NRDC et al., v. Rodger,s et al. Locations will require a more detailed analysis to determine if
- seepage concerns exist and an evaluation to identify the type, advantages, and limitations of a
- 15 potential project.

16 2. Purpose / Statement of Need

- 17 This TM will screen out locations that do not require more detailed site evaluations and potential
- plan formulation for installation of seepage projects.
- 19 This TM and the future Seepage Project Handbook will inform management decisions by
- 20 identifying areas more or less at risk for groundwater seepage, at what flows they become at risk,
- and begin identifying locations for projects.

22 3. Background

- 23 The San Joaquin River Restoration Program (SJRRP) increases releases from Friant Dam in a
- 24 program of Interim Flows to collect data on relevant physical and biological parameters. High
- 25 groundwater tables restrict the amount of water the channel can convey without causing adverse
- 26 impacts to agriculture in adjacent fields. Reclamation will limit releases from Friant Dam and
- 27 Mendota Dam to non-damaging flow rates. Installation of projects will increase conveyance
- 28 capacity in support of the Restoration Goal.
- 29 The Seepage Management Plan (SMP) includes maps of historical shallow groundwater and
- 30 locations of identified seepage risks from landowner anecdotes. This TM expands upon the data
- 31 in the SMP, by mapping water surface in the San Joaquin River onto the surrounding lands
- without consideration of levees or topography.

- 1 The United States Geological Survey (USGS) is developing a refined version of the Central
- 2 Valley Hydrologic Model (CVHM) for the SJRRP. Planned tasks include refinement of the
- 3 existing 1 mile grid to a ¼ mile grid within 5 miles of the San Joaquin River, and further
- 4 refinement to a few hundred feet grid size within approximately 1 mile of the San Joaquin River.
- 5 Current schedules estimate these tasks to be complete in 2012. Upon completion of the CVHM
- 6 refinement, the groundwater model may provide useful information for locations of potential
- 7 seepage projects.

10

20

21 22

- 8 The San Joaquin River Restoration Settlement Act, Public Law 111-11 Title X, authorizes
- 9 Reclamation to design and construct channel and structural improvements.

4. Anticipated Outcomes

- 11 At the end of the study, the conclusions should result in the following:
- Maps of locations of seepage risk
- Flows at which locations become at risk

14 5. Methodology

- 15 Landowner- and San Joaquin River Resource Management Coalition-identified seepage risks
- have been updated based on comments and are included in Appendix A.
- 17 San Joaquin River water surface elevations taken from the HEC-RAS hydraulic model as well as
- 18 surveys were compared with terrain. The analysis extended water surface elevations beneath the
- adjacent fields to obtain predicted depths below ground surface, as shown in Figure 1.

Figure 1: Seepage Project Elevation Analysis Conceptual Model

- 23 The one-dimensional hydraulic model predicts water surface elevations at cross-sections.
- 24 Analysis included local flows of 1500 and 4500 cfs. Reclamation subtracted the water surface
- elevations from the 2008 LiDAR. Subtracted values give the shallowest depth below ground
- surface, and do not consider groundwater gradient.
- A second analysis used surveyed water surface elevations from surveys. See

Table 1 below for a description of the surveys and hydraulic modeling runs used to conduct this elevation analysis.

3 4

Table 1: Results by Reach

Reach	Type	Date	Local Flow (cfs)
1B	HEC-RAS Results		1500
1B	HEC-RAS Results		4500
2A	HEC-RAS Results		1500
2A	HEC-RAS Results		4500
3	HEC-RAS Results		1500
3	DWR Survey	January 5 – 11, 2011	1880
3	HEC-RAS Results		4500
4A	HEC-RAS Results		1500
4A	HEC-RAS Results		4500

5

6

15

6. Results

- 7 Appendix B shows a series of maps for the different water surface elevations and reaches. Maps
- 8 shown in Appendix B include colored areas based on the groundwater depth below ground
- 9 surface assuming no gradient to the groundwater table. The results assume the water surface
- 10 elevation in the river matches the groundwater elevation. Areas colored blue indicate that the
- water surface elevation in the river is above the ground surface. If there was a flat groundwater
- gradient, there would be surface ponding at that flow. Areas in red indicate that the water surface
- elevation in the river and assumed groundwater level is between 0 and 3 feet below the ground
- surface. Both blue and red areas indicate a high potential for seepage risks.

7. Discussion

- 16 This analysis assumes a flat groundwater table with no gradient. Monitoring data collected by the
- 17 SJRRP during the last 2 years indicates gradients exist in most locations. This TM does not
- 18 extrapolate between groundwater transects to make assumptions about gradient. The USGS will
- 19 conduct a gradient analysis over the entire SJRRP area as part of the refined CVHM model. The
- 20 lack of gradient analysis in this TM thus overestimates the effects of river stage on seepage. This
- 21 approach results in more locations and larger areas identified. The approach taken overestimates
- 22 potential seepage risks, making it conservative with respect to protection of agricultural lands.

- 1 8. Conclusions
- 2 The Paragraph 11(a) projects for Reach 2B and the Mendota Pool Bypass and Reach 4B will
- 3 increase channel capacity to 4500 cfs in those reaches.
- 4 The key areas of concern for seepage projects include the downstream end of Reach 2A, portions
- 5 of Reach 3, and the downstream end of Reach 4A.

Appendix A

Appendix B

Reach 2A - 1500 cfs local flow

Reach 3 - 4500 cfs local flow

Subject to Revision

