San Joaquin River Restoration Program

Fisheries Management Work Group
Technical Feedback Meeting

CSU-Stanislaus September 8, 2008

Agenda

- Introductions and meeting purpose
- Review of progress to date and reach-by-reach limiting factors
- Alternative floodway concepts
- Restoration strategy
 - Decision Tree
 - Definitions
 - Example routing
- Next steps and future meetings

Meeting Purpose

- Reach-by-reach limiting factors and objectives
 - Follow-up from last meeting
 - Review of changes, next steps
- Alternative Floodway Concepts
 - Your input and insights on floodplain concepts
- Introduce Restoration Strategy
 - Decision Tree
 - Your input and insights

Review of Progress to Date and Reach-By-Reach Limiting Factors

Available Documents

- Chinook Salmon Temporal Occurrence and Environmental Requirements
- Conceptual Model of Stressors and Limiting Factors for Chinook Salmon
- Temperature Model Selection
- Temperature Model Sensitivity Runs
 - Sets 1 & 2
 - Set 3
- Quantitative Fisheries Model Selection
- Initial Program Alternatives Report

All documents all available on the project website at: www.restoresjr.com

Taking the Next Step – Reach by Reach Limiting Factors

- Conceptual Models are general representations of system-wide factors and impacts
- Reach-by-reach assessment needed because:
 - Not every reach has the same limiting factors
 - Need process to identify and prioritize future actions/projects by reach
- Reach-by-reach assessment conducted to:
 - Prioritize limiting factors by reach
 - Prioritize objectives by reach

Reach-by-Reach Limiting Factors

- Reach-by-reach limiting factors are ranked based on the expected affect on abundance
 - Primary Abundance could be adversely affected to the extent that Restoration Goal may not be met
 - Secondary Anticipated low or negligible impact on abundance
- All the limiting factors and their priorities are based on existing conditions

Draft Adult Migration Limiting Factors

	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses
Inadequate Streamflow	PP	PP	PP	PP	PP	PP
Unsuitable Water Quality	SP	SP	SP	SP	SP	SP
Exports/ Diversions	SP	PP	PP	SP	PP	SP
False Migration Cues	SP	SP	SP	SP	SP	SP
Harvest	PP	PP	PP	PP	PP	PP

PP = Primary Priority SP = Secondary Priority

Draft Adult Holding Limiting Factors								
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses		
Insufficient Cold Water	PP	NA	NA	NA	NA	NA		
Inadequate Streamflow	PP	NA	NA	NA	NA	NA		
Predation	SP	NA	NA	NA	NA	NA		
Harvest	PP	NA	NA	NA	NA	NA		
JOAQUIN RIVER					PP = Prima SP = Second	ry Priority ary Priority		

Draft Spawning and Incubation Limiting Factors								
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses		
Blocked Gravel Recruitment	PP	NA	NA	NA	NA	NA		
Insufficient Cold Water	PP	NA	NA	NA	NA	NA		
Sedimentation and Turbidity	SP	NA	NA	NA	NA	NA		
Inadequate Streamflow	SP	NA	NA	NA	NA	NA		
Redd Super- imposition	SP	NA	NA	NA	NA	NA		
Hybridization	SP	NA	NA	NA	NA	NA		
Harvest	SP	NA	NA	NA	NA	NA		
JOAQUIN RIVER BESTORATION PROGRAM					PP = Prima SP = Second NA = Not a	lary Priority		

Draft Fry/Juvenile Rearing Limiting Factors								
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses		
Inadequate Streamflow	PP	PP	PP	PP	PP	PP		
Excessive Water Temperature	PP	PP	PP	PP	PP	PP		
Degraded Habitats	PP	PP	PP	PP	PP	PP		
Excessive Predation	PP	PP	SP	SP	PP	SP		
Excessive Entrainment	SP	PP	PP	SP	SP	SP		
Adult Carcasses	SP	SP	SP	SP	SP	SP		
Degraded Water Quality	SP	SP	SP	PP	PP	PP		
IN JUARTUIN KOVER	PP = Primary Priority SP = Secondary Priority							

Draft Smolt Migration Limiting Factors								
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses		
Inadequate Streamflow	PP	PP	PP	PP	PP	PP		
Excessive Water Temperature	PP	PP	PP	PP	PP	PP		
Degraded Habitats	PP	PP	PP	PP	PP	PP		
Excessive Predation	PP	PP	SP	SP	PP	SP		
Excessive Entrainment	SP	PP	PP	SP	SP	SP		
Adult Carcasses	SP	SP	SP	SP	SP	SP		
Degraded Water Quality	SP	SP	SP	PP	PP	PP		
Harvest	SP	SP	SP	SP	SP	SP		
	PP = Primary Priority SP = Secondary Priority							

Draft Yearling Limiting Factors								
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Bypasses		
Inadequate Streamflow	PP	PP	PP	PP	PP	PP		
Excessive Water Temperature	PP	PP	PP	PP	PP	PP		
Degraded Habitats	PP	PP	PP	PP	PP	PP		
Excessive Predation	PP?	PP?	SP	SP	PP?	SP		
Excessive Entrainment	SP	PP	PP	SP	SP	SP		
Adult Carcasses	SP	SP	SP	SP	SP	SP		
Degraded Water Quality	SP	SP	SP	PP	PP	PP		
Harvest	SP	SP	SP	SP	SP	SP		
11	PP = Primary Priority SP = Secondary Priority							

Floodplain Design Concepts

- Key questions to address:
 - How do you design your floodway for hydraulic capacity and fisheries benefits?
 - How do you evaluate floodplain types?
 - How much floodplain do you need?

Restoration Strategy

- Why have a restoration strategy?
 - Guide future actions
 - Sets up the adaptive management process
- Will be a foundational concept in the Fish Management Plan

Purpose and Intended Use of Action Routing Process

- Tool to screen potential future actions:
 - Full implementation
 - Pilot project
 - Targeted research
 - Discarded
- Transparent process to address limiting factors
- Based on DRERIP Decision Tree for Routing Actions

Definitions

Magnitude

 Assesses the size or level of the outcome, either positive or negative, as opposed to the scale of the Action.

Certainty

 Describes the likelihood that a given Restoration Action will achieve a certain Outcome.

Worth

Combines the magnitude and certainty of positive outcomes to convey the cumulative "value" of a Restoration Action toward achieving an outcome.

Risk

Combines the magnitude and certainty of negative outcomes to convey the cumulative "potential" for a Restoration Action to result in an adverse, or negative outcome.

Next Meetings October 7 November 4 Meetings at CSU Stanislaus 1:00 p.m. to 3:00 p.m.

