




# Updated 2023 Restoration Allocation & Default Flow Schedule April 20, 2023

## **Summary**

The updated Restoration Allocation is based on an Unimpaired Runoff Forecast at the 50% probability of exceedance of 4,569 TAF. This results in a Wet water year type. This value for the runoff forecast was arrived at by blending the DWR and NWS forecasts with a 60/40 ratio and adjusting for observed runoff to date. Accordingly, 557.038 TAF is allocated to the Restoration Program as measured at Gravelly Ford. The Restoration Administrator may elect to return a recommendation at any time.

## **Overview**

The following transmits the updated 2023 Restoration Allocation and Default Flow Schedule to the Restoration Administrator for the San Joaquin River Restoration Program (SJRRP), consistent with the January 2020 (version 2.1) Restoration Flow Guidelines (Guidelines). This Restoration Allocation and Default Flow Schedule provides the following:

- <u>Forecasted water year Unimpaired Runoff</u>: the estimated flows that would occur absent regulation on the river. This value is also known as the "Natural River," "Unimpaired Runoff," "Unimpaired Inflow," or "Full Natural Flow," and is utilized to identify the water year type.
- <u>Hydrograph Volumes</u>: the annual allocation hydrograph based on water year unimpaired runoff, utilizing Method 3.1 with the Gamma Pathway (RFG-Appendix C, Figure C3) agreed to by the Parties in December 2008.
- <u>Default Flow Schedule</u>: the schedule of Restoration Flows in the absence of a recommendation from the Restoration Administrator.
- <u>Additional Allocations</u>: the hypothetical Restoration Allocations that would result from 10%, 50%, 75%, and 90% probability of exceedance of the Unimpaired Runoff forecast.
- <u>Unreleased Restoration Flows</u>: the amount of Restoration Flows not released due to channel capacity constraints, without delaying completion of Phase 1 improvements.
- <u>Flow targets at Gravelly Ford</u>: the flows at the head of Reach 2, and estimated scheduled releases from Friant Dam adjusted for the assumed Holding Contract demands and losses in Exhibit B.

- Restoration Budget: the volumes for the annual allocation, spring flexible flow, base flow, riparian recruitment, and fall flexible flow.
- <u>Remaining Flow Volume</u>: the volume of Restoration Flows released, the remaining volume available, and associated limitations and flexibility.
- Operational Constraints: the flow release limitations based on downstream channel capacity, regulatory, or legal constraints.

Consistent with Paragraph 18 of the Settlement, the Restoration Administrator shall make recommendations to the Secretary of the Interior concerning the manner in which the hydrographs shall be implemented. As described in the Guidelines, the Restoration Administrator is requested to recommend a flow schedule showing the use of the entire annual allocation during the upcoming Restoration Year or otherwise identify Unreleased Restoration Flows and categorize recommended flows by account, if a recommendation is not provided by the Restoration Administrator, the Capacity Constrained Default Flow Schedule (Table 6b) or the most recently approved schedule will be implemented.

Since this allocation is essentially unchanged from the previous issuance, the Restoration Administrator may return a revised recommendation at their discretion.

# **Forecasted Unimpaired Runoff**

Unimpaired Runoff represents the natural water production of a river basin, unaltered by upstream diversions, storage, or by export or import of water to or from other watersheds (a.k.a "Unimpaired Inflow" or "Natural River" or "Full Natural Flow"). It is calculated for the period of a water year. The forecast of the Unimpaired Runoff determines the volume of Restoration Flows available for the Restoration Year (i.e. the Restoration Allocation). Information for forecasting the Unimpaired Runoff includes:

- Observation of Unimpaired Runoff into Millerton Lake to support the water supply allocation<sup>1</sup>;
- The California Department of Water Resources (DWR) Bulletin 120 latest update for San Joaquin River inflow to Millerton Lake Unimpaired Flow, and/or the most current DWR Bulletin Water Supply Index (WSI)<sup>3</sup>;
- The National Weather Service (NWS) Ensemble Streamflow Prediction (ESP) Water Supply Forecast for the San Joaquin River at Millerton Lake<sup>5</sup>;
- Other forecast models, ground-based observations, remotely-sensed observations, hydrologic models, analysis of historic patterns, and short-term weather forecasts as appropriate.

Table 1 shows the water year 2023 (October 1, 2022 to September 30, 2023) observed accumulated and forecasted water year Unimpaired Runoff into Millerton Lake. This table also includes the published DWR forecast, the DWR forecast adjusted for an expected runoff for the current month, the NWS forecast with and without a 7-day smoothing function applied to remove the day-to-day variance, and the NWS forecast with 7-day smoothing and adjustment for the expected runoff for the current month (Reclamation adjusts the DWR and NWS values by replacing the forecasted runoff for the current month with Reclamation's own estimate of runoff

for the current month, which increases accuracy and incorporates the latest data). Figure 1a plots DWR and NWS forecast values over the entire water year, while Figure 1b shows the most recent period in detail.

The DWR Water Supply Index forecast for April 1 (issued April 10) was updated by DWR on April 18 and adjusted by Reclamation to better align with observed runoff conditions to date and projections for the remainder of the month (becoming the "Runoff Adjusted DWR values"). NWS forecast values were also adjusted for runoff for the remainder of the month. The NWS forecasts consider the modeled weather over the next 15 days whereas the DWR B120 forecast does not account for current trends to the same degree.

Table 1 — San Joaquin River Water Year Actuals and Forecasts at Millerton Lake, in Thousands of Acre-Feet (TAF)

|                                                                                   | Forecast Probability of Exceedance |       |        |       |       |  |
|-----------------------------------------------------------------------------------|------------------------------------|-------|--------|-------|-------|--|
|                                                                                   | 90%                                | 75%   | 50%    | 25%   | 10%   |  |
| Accumulated Unimpaired Runoff<br>("Natural River")<br>April 19, 2023 <sup>1</sup> |                                    |       | 1518.3 |       |       |  |
| Accumulated Unimpaired Runoff as percent of normal <sup>2</sup>                   | 242%                               |       |        |       |       |  |
| DWR, April 1, 2023 <sup>3</sup><br>(Published Value)                              | 4,360                              | 4,520 | 4,720  | 4,950 | 5,130 |  |
| DWR, April 18, 2023 <sup>4</sup><br>(Runoff Adjusted)                             | 4,381                              | 4,482 | 4,596  | 4,775 | 4,948 |  |
| NWS, April 20, 2023 <sup>5</sup><br>(Published Daily Value)                       | 4,340                              | 4,410 | 4,470  | 4,550 | 4,630 |  |
| Smoothed NWS,<br>April 20, 2023 <sup>6</sup><br>(7-day Smoothing)                 | 4,335                              | 4,402 | 4,469  | 4,535 | 4,625 |  |
| NWS, April 20, 2023 <sup>4</sup> (Smoothed and Runoff Adjusted)                   | 4,294                              | 4,359 | 4,402  | 4,459 | 4,534 |  |

http://www.usbr.gov/mp/cvo/vungvari/milfln.pdf

<sup>&</sup>lt;sup>2</sup> Based on average accumulation of Unimpaired Runoff totaling 1830 TAF.

B120: http://cdec.water.ca.gov/cgi-progs/iodir?s=b120, or B120 Update: http://cdec.water.ca.gov/cgi-progs/iodir\_ss/b120up, or WSI: <a href="http://cdec.water.ca.gov/cgi-progs/iodir/WSI.2020">http://cdec.water.ca.gov/cgi-progs/iodir/WSI.2020</a>. April-July runoffs are converted to Water Year equivalents in this table.

<sup>4</sup> The adjusted data has been updated with the actual Unimpaired Runoff through the current date and projected out for the remainder of the month.

<sup>&</sup>lt;sup>5</sup> https://www.cnrfc.noaa.gov/ensembleProduct.php?id=FRAC1&prodID=9

The NWS smoothed data uses a 7-day triangular weighted moving average, where the most recent day (n) is given greater weight than each previous forecast day (n-1, 2, 3, etc.); this reduces noise stemming from ESP model input. The following formula is used: ((Forecast<sub>n-1</sub> \* 1) + (Forecast<sub>n-1</sub> \* 0.857) + (Forecast<sub>n-2</sub> \* 0.714) + (Forecast<sub>n-3</sub> \* 0.571) + (Forecast<sub>n-4</sub> \* 0.429) + (Forecast<sub>n-5</sub> \* 0.286) + (Forecast<sub>n-6</sub> \* 0.143)) / 4

<sup>&</sup>lt;sup>7</sup> Values at the 75% exceedance and 25% exceedance are interpolated.

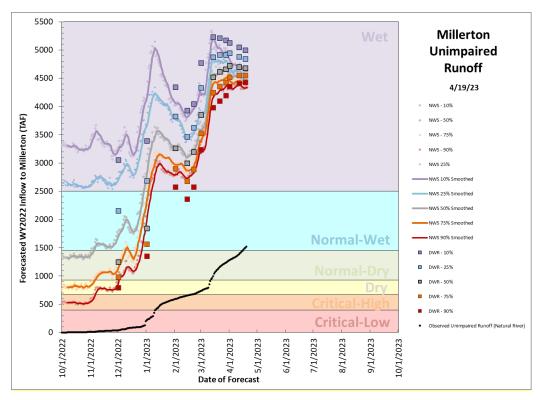
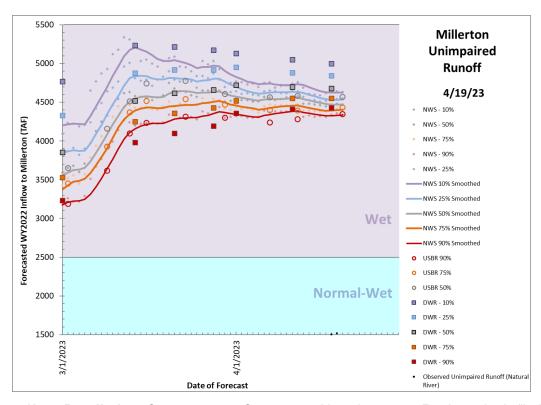




Figure 1a — Plot of 2023 Water Year forecasts. This includes both NWS Ensemble Streamflow Prediction Forecasts and DWR Forecasts



**Figure 1b — Detail plot of most recent forecasts.** Also shown are Reclamation's "hybrid" forecast with open circles.

Beginning in November 2022, precipitation received in the Upper San Joaquin watershed has exceeded seasonal norms. 5.6" of precipitation (as rain or snow water content) fell in November, which was 142% of normal. 16.8" of precipitation fell in December, which was 256% of normal. In January 21.9" of precipitation fell, or 284% of normal for the month. In February, 9.4" of precipitation fell, or 125% of normal for the month. In March, 22.3" of precipitation fell, or 357% of normal for the month. So far April has been very dry with just a few tenths of an inch falling within the upper San Joaquin watershed.

The snowpack appears to have reached peak snow water equivalent (SWE) about April 6<sup>th</sup>. Many snow pillows recorded their highest reading in 2023, with records dating back to the 1980s. Fifteen snow courses in and around the San Joaquin watershed measured during the April 1 survey recorded their highest SWE values, with records dating back to the 1950s. The 2023 snowpack easily exceeded the snowpack of 2017 and is roughly 10% greater than the snowpack volumes recorded in 1969 and 1983. This is likely the largest snowpack experienced by the Southern Sierra Nevada since 1906.

Table 2 depicts the aggregate snowpack volume from multiple models and the April 14-15 Airborne Snow Observatory (ASO) flight. Model results from M3Works iSnobal model and CU Boulder's Real-time SWE model have been synthesized into our current understanding of the watershed and those models have also been informed by ASO data. Reclamation's consensus estimate now closely tracks ASO and iSnobal data along with 10 of 16 operating "snow pillows" within the watershed and around the margins which weigh the overlying snow and measure the SWE.

Table 2 — Total snowpack volume (TAF of Snow Water Equivalent) depicted by models and remote sensing, and a consensus estimate for April 20, 2023.

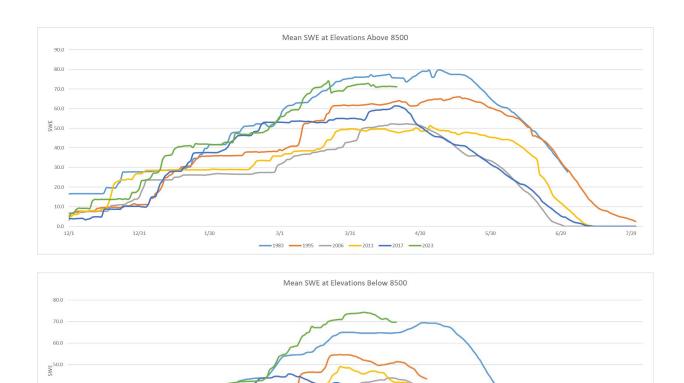
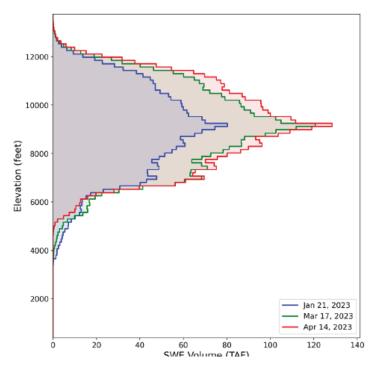
|                | Snowpack Model Volumes |        |               |                    |                                   |                          |  |  |
|----------------|------------------------|--------|---------------|--------------------|-----------------------------------|--------------------------|--|--|
|                | CNRFC                  | NOHRSC | CU<br>Boulder | iSnobal<br>(M3W)   | Aerial<br>Snow<br>Survey<br>(ASO) | Reclamation<br>Consensus |  |  |
| April 20, 2023 | 3,548                  | 3,605  | 4,032 8       | 3,547 <sup>9</sup> | 3,421 <sup>10</sup>               | 3,364                    |  |  |

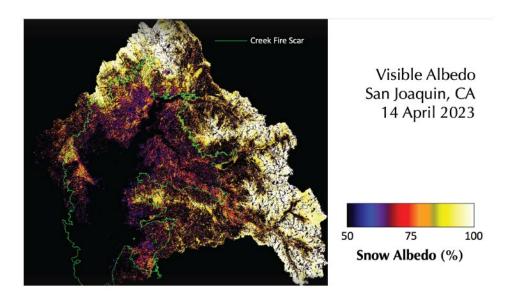
<sup>&</sup>lt;sup>8</sup> CU Boulder "Real-time SWE" model was published for April 1

Figure 2 shows the average snow pillow values (inches of SWE) for the 2023 water year as compared to other notable wet years. Many snow pillows are approaching all-time records (the instrumental record dates back to around 1980 – 1990), with Graveyard Meadow, Chilkoot Meadow, Kaiser Point, Mammoth Pass, and Volcanic Knob stations setting all-time records.

<sup>&</sup>lt;sup>9</sup> The "iSnobal" model for the San Joaquin is produced by M3Works under a contract with ASO. The model updated was published for April 1

<sup>&</sup>lt;sup>10</sup> Third ASO survey made on April 14-15



Figure 2 — Comparison of snow water equivalent (SWE) at snow pillow sensors in and around the Upper San Joaquin watershed. Comparison shows other Wet water year types. Snow pillows above 8,500' elevation is shown on top, with snow pillows below 8,500' elevation at bottom. Current SWE as of this date (green line) exceeds the instrumental record below 8,500'. Data above 8,500' is inconclusive because of few snow pillows at those elevations working (MHP snow pillow stopped working in late March). Several individual snow pillows exceeded all-time high SWE values prior to peak SWE which occurred on April 6.

Airborne Snow Observatory surveys have been particularly useful in 2023 as many snow pillows have become inoperative under heavy snow load and many snow courses were inaccessible. This technology uses precision lidar to measure snow depth and is then combined with modeled snowpack density grids to produce a reliable measure of SWE. Considerable effort was required to carefully model snowpack density, made more difficult by the absence of some ground-based measurements. This data helps to counteract the complexity of the extreme snowpack, which exceeds historic analogs. Figure 3 depicts SWE volume by elevation, with peak SWE occurring between the second and third surveys (peak volume was likely 100-200 TAF higher than what was captured on April 14-15).

Figure 4 shows the spatial pattern of albedo (snow reflectivity) in the watershed. Hyperspectral cameras aboard the ASO platform capture the brightness of the snow. Atypically high albedos in 2023 have delayed snowmelt and will require more heat and sunlight to melt than usual. This data helps Reclamation forecast when the snow will melt and runoff.



**Figure 3 — Distribution of SWE for three ASO surveys.** Comparison of snowpack growth between mid-January, mid-March, and mid-April shows the prodigious water volume captured in snow between 8,000' and 10,000' elevation. Snow persisted at elevations below 6,000', even into April, which is quite unusual in recent decades.



**Figure 4 — Visible band albedo (reflectivity) across the watershed.** The outline of the 2020 Creek Fire is shown in green, and substantially lower albedos are found within the burn area due to soot and other impurities in the snow. The remainder of the watershed has unusually high albedo and will resist melting.

#### **Combining Forecasts**

Staff from the South-Central California Area Office of Reclamation and SJRRP jointly track and evaluate the accuracy of runoff forecasts on a regular basis. Based on the age of these forecasts, the short-term and long-term weather forecasts, the climatological outlook, observed Unimpaired Runoff, and other available information, a hybrid forecast is generated. The weighting of the different components is regularly evaluated and selected using the best available information and professional judgment. For the current allocation, the DWR "runoff adjusted" and NWS "smoothed and runoff adjusted" forecasts are combined with a 60/40 blending respectively. The selection of this blending ratio is based on the long-term performance of the forecasts and is further guided by an experimental WRF-Hydro model and an in-house water budget model produced by Reclamation. Note in Table 3 below that the 25% and 10% probability of exceedances surpass the record year for the San Joaquin runoff — 1983 which had 4,643 TAF of unimpaired runoff.

Reclamation took the unusual step of "offsetting" the forecast values by an arbitrary water volume at the 50%, 25%, and 10% exceedances. This decision was made to widen the range of probable outcomes to address higher uncertainty in hydrology. Specifically, Reclamation is unsure that the runoff from such a large snowpack will follow the conventional wet-year pattern where 20–30% of water is lost to soil moisture and evapotranspiration while 70–80% of snowpack produces runoff. Offsetting those three exceedances upward guards against the possibility of more efficient runoff processes producing a greater water year runoff volume. Reclamation's hybrid forecast thus captures both meteorological (future storms) and hydrologic (runoff efficiency) uncertainty.

Table 3 — Current Blending and Hybrid Unimpaired Runoff Forecasts (TAF)

|                                            | Forecast Probability of Exceedance using blending |                                                                                           |  |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                            | 90% 75% 50% 25% 10%                               |                                                                                           |  |  |  |  |  |  |
| Blending Ratio<br>(DWR/NWS)                | (with +50 TAI                                     | 60/40<br>(with +50 TAF offset at 50%, +100 TAF offset at 25%, and +200 TAF offset at 10%) |  |  |  |  |  |  |
| Hybrid Unimpaired<br>Runoff Forecast (TAF) | 4,346 4,433 4,569 4,749 4,982                     |                                                                                           |  |  |  |  |  |  |

## **Restoration Allocation**

As per the Guidelines, the **50% probability of exceedance** forecast is used for the allocation under current hydrologic conditions to set the Restoration Flow Allocation. Table 4 below, from the Guidelines version 2.1, depicts the progression of forecast exceedances used to set the Restoration Allocation.

**Table 4 — Guidance on Percent Exceedance Forecast to Use for Allocation**. The final allocation issuance will be made in May this year as per the Guidelines.

|                         |              |         | Date of Forecast Used for the Allocation |       |       |     |      |  |  |
|-------------------------|--------------|---------|------------------------------------------|-------|-------|-----|------|--|--|
|                         | Value (TAF)  | January | February                                 | March | April | May | June |  |  |
|                         | Above 2200   | 50      | 50                                       | 50    | 50    | 50  | _    |  |  |
| If the 500/             | 1600 to 2200 | 75      | 75                                       | 50    | 50    | 50  | _    |  |  |
| If the 50% forecast is: | 900 to 1599  | 75      | 75                                       | 75    | 50    | 50  | _    |  |  |
| iorecast is.            | 500 to 899   | 90      | 90                                       | 75    | 50    | 50  | 50   |  |  |
|                         | Below 500    | 90      | 90                                       | 90    | 90    | 75  | 50   |  |  |

Applying the forecast blending and offsets determined by Reclamation and using the 50% probability of exceedance forecast dictated by the Guidelines, Reclamation calculates an Unimpaired Runoff hybrid forecast of 4,569 Thousand Acre-Feet (TAF) and a Wet Water Year Type. This provides a Restoration Allocation of 557.038 TAF as measured at Gravelly Ford (GRF). Combined with Holding Contracts on the San Joaquin River, this results in a Friant Dam Release of approximately 674.182 TAF. Other hypothetical allocations are presented in Table 5 as grayed values and indicate the range of probable forecasts and the resulting Restoration Allocations.

Table 5 — SJRRP Water Year Type and Allocation for 2023 Restoration Year Shown with Other Hypothetical Values in Gray

|                                               | Forecast Probability of Exceedance using proposed blending |         |         |         |         |  |  |  |
|-----------------------------------------------|------------------------------------------------------------|---------|---------|---------|---------|--|--|--|
|                                               | 90%                                                        | 75%     | 50%     | 25%     | 10%     |  |  |  |
| Hybrid Unimpaired<br>Runoff Forecast<br>(TAF) | 4,346                                                      | 4,433   | 4,569   | 4,749   | 4,982   |  |  |  |
| Water Year Type                               | Wet                                                        | Wet     | Wet     | Wet     | Wet     |  |  |  |
| Restoration<br>Allocation at GRF<br>(TAF)     | 557.038                                                    | 557.038 | 557.038 | 557.038 | 557.038 |  |  |  |
| Friant Dam Flow<br>Releases (TAF)             | 674.182                                                    | 674.182 | 674.182 | 674.182 | 674.182 |  |  |  |

## **Unreleased Restoration Flow Pricing**

The first allocation issuance after March 21 sets the price for 2023 Tier 2 Unreleased Restoration Flows (URFs) which may be made available to Friant Contractors. Accordingly, the price of Tier 2 URFs is set to \$57.36, should any become available in 2023. Tier 1 URF pricing is

independent of hydrology and fixed at \$23.00 per acre-foot. The first two blocks of Tier 1 URFs have been released for delivery as sales. Additional blocks of Tier 1 URFs are anticipated.

#### **Contractual Obligation Considerations**

Consistent with Section 10004(j) of the San Joaquin River Restoration Settlement Act, the Settlement and the Settlement Act do not modify the rights and obligations of the United States under the Purchase Contract between Miller and Lux and the United States (Purchase Contract) and the Second Amended Exchange Contact between the United States, Department of the Interior, Bureau of Reclamation and Central California Irrigation District, San Luis Canal Company, Firebaugh Canal Water District, and Columbia Canal Company (Exchange Contract). Reclamation's obligations in the Purchase Contract and Exchange Contract remain unchanged. This is consistent with Condition 17 of Reclamation's 2013 Water Rights order addressing Restoration Flows.

Hydrologic conditions in Northern California have improved to the extent that Reclamation is very likely to satisfy a "non-Shasta Critical" allocation for the San Joaquin River Exchange Contract with South-of-Delta supplies, obviating the need for supplementary supply from Millerton Lake.

## **Default Flow Schedule**

The Default Flow Schedule, derived from Exhibit B in the Settlement, identifies how Reclamation will schedule the Restoration Allocation for the current Water Year Type and Unimpaired Runoff volume absent a recommendation from the Restoration Administrator. The Guidelines provide detail on how a Default Flow Schedule is parsed from the allocation volume. This approved method of distributing water throughout the year is referred to as "Method 3.1" with the "gamma pathway."

#### **Exhibit B Method 3.1 Default Flow Schedules**

Table 6a shows the Basic Default Flow Schedule flows and corresponding Restoration Allocation volumes for the entire year absent channel capacity and seepage constraints, including total releases from Friant Dam and Restoration Flows releases in excess of Holding Contracts. Volume is distributed as various flow rates across the year as per the methods explained in the Guidelines.

Table 6b shows the Capacity Constrained Default Flow Schedule volumes with all expected operational constraints, primarily controlled by seepage limitations in Reach 4A. Any volume within the Spring Flexible Flow Account and Fall Flexible Flow Account that cannot be released on the default schedule is shifted to times with available capacity as per the Guidelines. This Capacity Constrained Default Flow Schedule depicted in Table 6b will be implemented in the absence of a specific recommendation by the Restoration Administrator. With these known constraints, a Restoration Flow volume of 334.089 TAF is generated that cannot be scheduled for release without shifting outside of the flexible flow periods (which would require a Water Supply Test). This volume would become Unreleased Restoration Flows (URFs) under the Capacity Constrained Default Flow Schedule. This is an estimated volume of water, actual URF volumes will depend on several factors including the Restoration Administrator Recommendation, flow schedule to-date, recapture of Restoration Flows at Mendota Pool, any Friant Dam releases made for the Exchange Contract, and real-time assessments of groundwater constraints.

Table 6a — Basic Default Flow Schedule

|                     |                          | Flow                 | (cfs)                    |                            | Volun                    | ne (TAF)                      |
|---------------------|--------------------------|----------------------|--------------------------|----------------------------|--------------------------|-------------------------------|
| Flow Period         | Friant<br>Dam<br>Release | Holding<br>Contracts | Flow<br>Target at<br>GRF | Restoration<br>Flow at GRF | Friant<br>Dam<br>Release | Restoration<br>Flow at<br>GRF |
| Mar 1 –<br>Mar 15   | 500                      | 130                  | 375                      | 370                        | 14.876                   | 11.008                        |
| Mar 16 –<br>Mar 31  | 1500                     | 130                  | 1375                     | 1370                       | 47.603                   | 43.478                        |
| Apr 1 –<br>Apr 15   | 2500                     | 150                  | 2355                     | 2350                       | 74.380                   | 69.917                        |
| Apr 16 –<br>Apr 30  | 4000                     | 150                  | 3855                     | 3850                       | 119.008                  | 114.545                       |
| May 1 –<br>May 28   | 1468                     | 190                  | 1283                     | 1278                       | 81.547                   | 70.995                        |
| May 29 –<br>Jun 30  | 1468                     | 190                  | 1283                     | 1278                       | 96.109                   | 83.673                        |
| July 1 –<br>July 29 | 1468                     | 230                  | 1243                     | 1238                       | 84.459                   | 71.230                        |
| Jul 30 –<br>Aug 31  | 350                      | 230                  | 125                      | 120                        | 22.909                   | 7.855                         |
| Sep 1 –<br>Sep 30   | 350                      | 210                  | 145                      | 140                        | 20.826                   | 8.331                         |
| Oct 1 –<br>Oct 31   | 350                      | 160                  | 195                      | 190                        | 21.521                   | 11.683                        |
| Nov 1 –<br>Nov 6    | 700                      | 130                  | 575                      | 570                        | 8.331                    | 6.783                         |
| Nov 7 –<br>Nov 10   | 700                      | 130                  | 575                      | 570                        | 5.554                    | 4.522                         |
| Nov 11 –<br>Nov 30  | 350                      | 120                  | 235                      | 230                        | 13.884                   | 9.124                         |
| Dec 1 –<br>Dec 31   | 350                      | 120                  | 235                      | 230                        | 21.521                   | 14.142                        |
| Jan 1 –<br>Jan 31   | 350                      | 100                  | 255                      | 250                        | 21.521                   | 15.372                        |
| Feb 1 –<br>Feb 29   | 350                      | 100                  | 255                      | 250                        | 20.132                   | 14.380                        |
|                     |                          |                      |                          | Totals                     | 674.182                  | 557.038                       |

Table 6b — Capacity Constrained Default Flow Schedule

|                     |                          | Flow (               | (cfs)                    |                               |                          | Volume (TAI                   | =)                                              |
|---------------------|--------------------------|----------------------|--------------------------|-------------------------------|--------------------------|-------------------------------|-------------------------------------------------|
| Flow<br>Period      | Friant<br>Dam<br>Release | Holding<br>Contracts | Flow<br>Target<br>at GRF | Restoration<br>Flow at<br>GRF | Friant<br>Dam<br>Release | Restoration<br>Flow at<br>GRF | Unreleased<br>Restoration<br>Flow <sup>12</sup> |
| Mar 1 –<br>Mar 15   | 567                      | 130                  | 442                      | 437                           | 16.857                   | 12.989                        | -1.981                                          |
| Mar 16 –<br>Mar 31  | 567                      | 130                  | 442                      | 437                           | 17.981                   | 13.855                        | 29.623                                          |
| Apr 1 –<br>Apr 15   | 587                      | 150                  | 442                      | 437                           | 17.452                   | 12.989                        | 56.928                                          |
| Apr 16 –<br>Apr 30  | 587                      | 150                  | 442                      | 437                           | 17.452                   | 12.989                        | 101.556                                         |
| May 1 –<br>May 28   | 627                      | 190                  | 442                      | 437                           | 34.798                   | 24.246                        | 46.749                                          |
| May 29 –<br>Jun 30  | 627                      | 190                  | 442                      | 437                           | 41.012                   | 28.576                        | 55.097                                          |
| July 1 –<br>July 29 | 667                      | 230                  | 442                      | 437                           | 38.342                   | 25.112                        | 46.117                                          |
| Jul 30 –<br>Aug 31  | 350                      | 230                  | 120                      | 120                           | 22.909                   | 7.855                         | 0.000                                           |
| Sep 1 –<br>Sep 30   | 350                      | 210                  | 145                      | 140                           | 20.826                   | 8.331                         | 0.000                                           |
| Oct 1 –<br>Oct 31   | 350                      | 160                  | 195                      | 190                           | 21.521                   | 11.683                        | 0.000                                           |
| Nov 1 –<br>Nov 6    | 567                      | 130                  | 442                      | 437                           | 6.743                    | 5.196                         | 1.588                                           |
| Nov 7 –<br>Nov 10   | 567                      | 130                  | 442                      | 437                           | 4.495                    | 3.464                         | 1.059                                           |
| Nov 11 –<br>Nov 30  | 417                      | 120                  | 302                      | 297                           | 16.531                   | 11.770                        | -2.646                                          |
| Dec 1 –<br>Dec 31   | 350                      | 120                  | 235                      | 230                           | 21.521                   | 14.142                        | 0.000                                           |
| Jan 1 –<br>Jan 31   | 350                      | 100                  | 255                      | 250                           | 21.521                   | 15.372                        | 0.000                                           |
| Feb 1 –<br>Feb 29   | 350                      | 100                  | 255                      | 250                           | 20.132                   | 14.380                        | 0.000                                           |
|                     | -                        |                      |                          | Totals                        | 340.093                  | 222.949                       | 334.089                                         |

<sup>&</sup>lt;sup>11</sup> In recent years, Holding Contract demands have been higher than assumed under Exhibit B of the Settlement, in which case, flows at Friant are increased to achieve the Gravelly Ford Flow Target.

<sup>&</sup>lt;sup>12</sup> This estimate of URF volume is based on the most constraining reach, with Spring Flexible Flows redistributed March 1 through May 28 as necessary and Fall Flexible Flows redistributed Sept 3 through December 28 as necessary up to channel capacity constraints. Constrained values are based on actual losses, not Exhibit B losses. Actual URF volume will depend on the Restoration Administrator's recommendations.

## **Exhibit B Restoration Flow Budget**

Table 7 shows the components of the annual water budget for February 1, 2023, through February 29, 2024 (i.e. the Restoration Year). The Continuity Flow Account, Spring Flexible Flow Account, Riparian Recruitment Flow Account, and Fall Flexible Flow Account reflect the Exhibit B hydrograph for the current Restoration Allocation. The expected 117.143 TAF for Holding Contracts is shown. The volume for each flow account may change with subsequent Restoration Allocations.

Table 7 — Restoration Budget with Flow Accounts

|                   | Holding                                        | Re                            | estoration Flov                       | w Accounts (T                              | AF)                              |  |
|-------------------|------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------|----------------------------------|--|
| Period            | Contract<br>Demand<br>(TAF)                    | Continuity<br>Flow<br>Account | Spring<br>Flexible<br>Flow<br>Account | Riparian<br>Recruitment<br>Flow<br>Account | Fall Flexible<br>Flow<br>Account |  |
| Feb 1 – Feb 28    | -                                              | 0                             |                                       | _                                          | _                                |  |
| Mar 1 – Apr 30    | 16.919                                         | 25.428                        | 213.520                               | _                                          | -                                |  |
| May 1 – May<br>28 | 10.552                                         | 8.886                         |                                       | 199.636                                    | -                                |  |
| May 29 – Jul 29   | 25.666                                         | 17.375                        | I                                     | 199.030                                    | -                                |  |
| Jul 30 – Aug 31   | 15.055                                         | 7.855                         | 1                                     | _                                          | -                                |  |
| Sep 1 – Sep 30    | 12.496                                         | 8.331                         | 1                                     | _                                          |                                  |  |
| Oct 1 – Nov 30    | 17.177                                         | 25.175                        | I                                     | _                                          | 6.942                            |  |
| Dec 1 – Dec 31    | 7.379                                          | 14.142                        | ı                                     | _                                          |                                  |  |
| Jan 1 – Feb 29    | 11.702                                         | 29.752                        | _                                     | _                                          | -                                |  |
|                   | 117.143 <sup>13</sup>                          | 136.939                       | 213.520                               | 199.636                                    | 6.942                            |  |
|                   | 717.170                                        | 557.038 (Base Flow Volume)    |                                       |                                            |                                  |  |
|                   | 674.182 (approximate Friant Release Volume) 13 |                               |                                       |                                            |                                  |  |

<sup>&</sup>lt;sup>13</sup> In recent years, Holding Contract demands have been higher than assumed under Exhibit B of the Settlement, in which case, flows at Friant are increased to achieve the Gravelly Ford Flow Target.

#### **Remaining Flow Volumes**

The amount of water remaining for scheduling is the volume of flows released from Friant Dam in excess of releases required to meet Holding Contract demands, less past releases. Table 8 tracks these balances among the four flow accounts. Tracking these four flow accounts is necessary for application of the Water Supply Test. The released to date volumes are derived from quality-assurance/quality-control daily average data when available, and partly from provisional data posted to CDEC, and thus may have future adjustments. Such adjustments may also affect the remaining flow volume.

Note that the Restoration Administrator has the option on the return of URF exchanges in 2023 (Table 9).

Table 8 — Estimated Restoration Flow Volume Remaining and Released to Date

|            | Flow Account                                    | Yearly<br>Allocation<br>(TAF) | Released<br>to Date <sup>15</sup><br>(TAF) | Remaining<br>Flow<br>Volume<br>(TAF) |
|------------|-------------------------------------------------|-------------------------------|--------------------------------------------|--------------------------------------|
|            | Continuity Flow Account<br>(Mar 1 — Feb 28)     | 136.939                       | 21.461                                     | 115.478                              |
| Base Flows | Spring Flexible Flows<br>(Feb 1 – May 28)       | 213.520                       | 25.359                                     | 22.898                               |
| Base       | Riparian Recruitment Flows<br>(May 1 — Jul 29)  | 199.636                       | 0                                          | 199.636                              |
|            | Fall Flexible Flows<br>(Sep 3 – Dec 28)         | 6.942                         | 0                                          | 6.942                                |
|            | Buffer Flows <sup>14</sup>                      | _                             | 0                                          | _                                    |
| Unre       | eleased Restoration Flows (Sales and Exchanges) | _                             | 165.263 <sup>16</sup>                      | 0                                    |
| Unr        | eleased Restoration Flows (Returned Exchanges)  | _                             | 0                                          | 0                                    |
|            | Purchased Water                                 | _                             | 0                                          | 0                                    |
|            |                                                 | Totals:                       | 212.083                                    | 344.955                              |

<sup>&</sup>lt;sup>14</sup> Buffer Flow volumes are based on actual releases, and are not an allocated volume per se.

<sup>&</sup>lt;sup>15</sup> Through 4/20/2023

<sup>&</sup>lt;sup>16</sup> 165.263 TAF of URF water derived from Spring Flexible Flows.

## **Available URF Exchange Returns**

Reclamation is in the process of extending and revising three existing Unreleased Restoration Flow exchanges. The available water for return to the Restoration Administrator, incorporating the expected agreement revisions, is shown in Table 9.

Table 9 — Volume available from URF Exchange Returns

| Exchange<br>Partner | Period of return <sup>16</sup> | Minimum<br>Required<br>Return (TAF) | Maximum<br>Annual<br>Return (TAF)            | Notes                                                                                                                    |
|---------------------|--------------------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| AEWSD               | Mar-Sep                        | 3.500 <sup>16</sup>                 | 3.500 <sup>17</sup>                          | Expires Feb 2025, requiring the use of 3,500 AF for each of the remaining two years                                      |
| DEID                | Mar-Sep                        | 0                                   | 1.200                                        | In Normal-Dry through Wet year types only. Must not be any Exchange Contractor Call. Expires in 2024.                    |
| FID                 | Flexible                       | 2.000 <sup>16</sup>                 | 2.000                                        | Expires Feb 2023<br>(2018 agreement)                                                                                     |
| FID                 | Mar-Sep                        | 0                                   | 3.600                                        | Exchange is reduced by<br>10% per year, expiring Feb<br>2025 (2016 agreement<br>modified in 2022)                        |
| FID                 | Jun-Oct                        | 0                                   | 2.000                                        | May not be called upon in same year as 2016/2022 agreement. In Normal-Dry through Wet year types only.  Expires in 2024. |
| OCID                | Mar-Sep                        | 0                                   | Up to 3.000                                  | Return ratio depends upon<br>Class 1 declaration, expiring<br>Feb 2025                                                   |
| OCID                | Mar-Sep                        | 4.667 <sup>16</sup>                 | Variable, up to 9.334, 4.667 in any one year | In Normal-Dry through Wet year types only. Must be 50% Class 1 or greater. Expires in 2024.                              |

<sup>&</sup>lt;sup>16</sup> if minimum volume of water is not taken, unused water is purchased by District

<sup>&</sup>lt;sup>17</sup> unless otherwise by mutual agreement

#### **Operational Constraints**

Operating criteria, such as channel conveyance capacity, ramping rate constraints, scheduled maintenance, reservoir storage, contractual obligations, and downstream seepage concerns, may restrict the release of Restoration Flows. Table 10 summarizes known 2023 operational constraints.

Table 10 — Summary of Operational Constraints

| Type of Constraint                      | Period                                   | Flow Limitation                                       |  |  |
|-----------------------------------------|------------------------------------------|-------------------------------------------------------|--|--|
|                                         | Currently in effect                      | 1,210 cfs in Reach 2B                                 |  |  |
| Levee Stability                         | Currently in effect                      | 2,600 cfs in Middle Eastside Bypass                   |  |  |
|                                         | Currently in effect                      | 2,350 cfs in Reach 5                                  |  |  |
|                                         | Currently in effect, see                 | Reach 2A: Approx. 600 cfs @ GRF <sup>1</sup>          |  |  |
| Channel Conveyance / Seepage Limitation | latest Flow Bench Evaluation for precise | Reach 3: Approx. 850 cfs @ MEN                        |  |  |
| Limitation                              | values                                   | Reach 4A: Approx. 315 cfs @ SDP                       |  |  |
| USFWS Biological Opinion                | Until consultation for "Phase 2"         | 1,660 cfs of Restoration Flows released at Friant Dam |  |  |

<sup>&</sup>lt;sup>1</sup> Expect a seepage limitation of approx. 600 cfs at GRF during typical operations. The limitation as of date of this allocation accounts for drainage of elevated groundwater conditions from January - February 2023 flood management releases and is approximately 380 cfs at GRF.

The 2023 Channel Capacity Report identifies a maximum flow in Reach 2B of 1,210 cfs due to levee stability constraints. This results in a maximum release from Friant Dam between 1,310 cfs and 1,540 cfs depending on the time of year. The 2023 Channel Capacity Report also identifies a maximum flow in the Middle Eastside Bypass of 2,600 cfs, which has increased from the 2022 Channel Capacity Report value of 1,070 cfs due to the completion of the Reach O levee improvements project and the removal of two weirs within the Eastside Bypass.

#### **2023 Allocation History**

The Restoration Allocation are adjusted multiple times between the date of the initial allocation and the final allocation; issuances will generally take place on a monthly schedule but may also be issued based on rapidly changing hydrologic conditions. The Restoration Administrator is responsible for contingency planning and managing releases to stay within the current allocation to the extent possible, in accordance with the Guidelines. Table 11 summarizes the Allocation History for this Restoration Year.

Table 11 — Allocation History

| Allocation<br>Type | Issue Date           | Forecast<br>Blending<br>Applied        | Unimpaired Runoff Forecast (at forecast exceedance) | Year<br>Type | Restoration<br>Allocation at<br>Gravelly<br>Ford | Restoration<br>Flows and<br>URFs<br>Released |
|--------------------|----------------------|----------------------------------------|-----------------------------------------------------|--------------|--------------------------------------------------|----------------------------------------------|
| Initial            | January<br>20, 2023  | 0/100                                  | 3,403 TAF<br>(@ 50%)                                | Wet          | 556.542 TAF                                      | 0<br>(through<br>1/19/2023)                  |
| Updated            | February<br>17, 2023 | 30/70                                  | 3,080 TAF<br>(@ 50%)                                | Wet          | 557.038 TAF                                      | 167.564<br>(through<br>2/16/2023)            |
| Updated            | March 14,<br>2023    | 0/100                                  | 4,537 TAF<br>(@ 50%)                                | Wet          | 557.038 TAF                                      | 179.992<br>(through<br>3/13/2023)            |
| Updated            | April 20,<br>2023    | 60/40<br>(0/0/+50/+100/+200<br>offset) | 4,569 TAF<br>(@ 50%)                                | Wet          | 557.038 TAF                                      | 212.083<br>(through<br>4/20/2023)            |

#### Appendix A: Abbreviations, Acronyms, and Glossary

af Acre-feet

ARS USDA Agricultural Research Service

ASO Airborne Snow Observatory

B120 DWR Bulletin #120 which forecasts water supply

CALSIM California Statewide Integrated Model
CCID Central California Irrigation District
CDEC California Data Exchange Center

cfs Cubic feet per second CVP Central Valley Project

Delta Sacramento-San Joaquin Delta

DWR California Department of Water Resources

ESP Ensemble Streamflow Prediction

Exhibit B Exhibit B of the Settlement depicting Default

Hydrograph

GRF Gravelly Ford Flow Gauge
Guidelines Restoration Flow Guidelines

LSJLD Lower San Joaquin Levee District

NWS National Weather Service

QA/QC Quality Assurance/Quality Control (i.e. finalized)

Reclamation U.S. Department of the Interior, Bureau of

Reclamation

Restoration Year the cycle of Restoration Flows, March 1 through

February 28/29

RWA SJRRP Reclaimed Water Account

Secretary U.S. Secretary of the Interior

Settlement Stipulation of Settlement in NRDC, et al., v. Kirk

Rodgers, et al.

SJREC San Joaquin River Exchange Contractors
SJRRP San Joaquin River Restoration Program

SLCC San Luis Canal Company
SMP Seepage Management Plan
SWE Snow Water Equivalent
SWP State Water Project
TAF thousand acre—feet

URF Unreleased Restoration Flows
WSI DWR Water Supply Index

WY Water year, October 1 through September 30

#### **Appendix B: Previous Year (2022) Flow Accounting**

Table B — Restoration Flow Accounting and Unreleased Restoration Flows, and Holding Contracts, for the period February 2022 through February 2023. Flood management releases to San Joaquin River occurred January 5 – February 5, 2023. Releases of 201.275 TAF for the Exchange Contractor occurred April 1 – July 12, 2022. The final Restoration Allocation was 232.470 TAF. Additionally, Unreleased Restoration Flow exchange returns of 3.500 TAF were released, and 0 TAF of Buffer Flows. A total of 6.436 TAF was advanced into February 2022. The Restoration Allocation was expended with -0.200 TAF ending balance.

|                   | Gravelly<br>Ford 5 cfs | Other<br>flows<br>passing<br>GRF<br>(TAF) | URF     | Released Restoration Flow Volumes (TAF) |                            |                          |                                 |                |                            |                 |  |  |
|-------------------|------------------------|-------------------------------------------|---------|-----------------------------------------|----------------------------|--------------------------|---------------------------------|----------------|----------------------------|-----------------|--|--|
| Flow<br>Period    | requirement<br>(TAF)   |                                           |         | Continuity<br>Flow                      | Spring<br>Flexible<br>Flow | Fall<br>Flexible<br>Flow | Riparian<br>Recruitment<br>Flow | Buffer<br>Flow | Flexible<br>Buffer<br>Flow | URF<br>returned |  |  |
| Feb 1 –<br>Feb 28 | _                      | -                                         |         | _                                       | 6.436                      | _                        | _                               | -              | _                          |                 |  |  |
| Mar 1 –<br>Mar 31 | 11.796                 | 0                                         |         | 13.527                                  | 13.010                     | _                        | -                               | 0              | _                          |                 |  |  |
| Apr 1 –<br>Apr 30 | 13.234                 | 40.380                                    |         | 3.967                                   | 2.553                      | _                        | _                               | 0              | _                          |                 |  |  |
| May 1 –<br>May 31 | 14.858                 | 74.884                                    | 47.982  | 0                                       | 01                         | _                        | 0                               | 0              | 0                          |                 |  |  |
| Jun 1 –<br>Jun 30 | 16.980                 | 76.951                                    | 53.094  | 0                                       | -                          | _                        | 0                               | 0              | 0                          |                 |  |  |
| Jul 1 –<br>Jul 31 | 13.831                 | 9.735                                     |         | 0                                       | -                          | _                        | 0                               | 0              | 0                          |                 |  |  |
| Aug 1 –<br>Aug 31 | 15.017                 | 0.865                                     |         | 0                                       | _                          | _                        | 0                               | 0              | 0                          |                 |  |  |
| Sep 1 –<br>Sep 30 | 14.227                 | 0.791                                     |         | 0                                       | _                          | 0                        | _                               | 0              | 0                          |                 |  |  |
| Oct 1 –<br>Oct 31 | 16.141                 | 0.238                                     |         | 10.651                                  | _                          | 0                        | _                               | 0              | 0                          |                 |  |  |
| Nov 1 –<br>Nov 30 | 14.339                 | 0                                         |         | 14.521                                  | _                          | 1.870                    | _                               | 0              | 0                          |                 |  |  |
| Dec 1 –<br>Dec 31 | 12.367                 | 0                                         |         | 19.444                                  | _                          | 5.072                    | _                               | 0              | 0                          | 0.139           |  |  |
| Jan 1 –<br>Jan 31 | 17.554                 | 221.786                                   |         | 22.922                                  | -                          | -                        | _                               | 0              | -                          | 3.361           |  |  |
| Feb 1 –<br>Feb 28 | 7.892                  | 17.635                                    |         | 17.621                                  | _                          | _                        | _                               | 0              | -                          |                 |  |  |
| Totals            | 168.236                | 443.264                                   | 101.076 | 102.653                                 | 21.999                     | 6.942                    | O the Continuity F              | 0              | 0                          | 3.500           |  |  |

<sup>&</sup>lt;sup>1</sup> Prior to May 28, 67.086 TAF of the Spring Flexible Flow account was transferred into the Continuity Flow Account, passing a Water Supply Test, and became Unreleased Restoration Flows sold or exchanged to Friant Contractors.

**Allocated Restoration Flows:** 131.594 cfs

All Buffer Flows: 0 cfs

**Restoration Flows affecting Friant water supply:** 131.594 cfs

**Restoration Flows released to river: 135.094 cfs** 

**Restoration Allocation used: 232.670 cfs** 

Friant Dam releases (excludes removed URFs and excludes contributions from tributary

**inflows**): 687.602 cfs

## **Appendix C: History of Millerton Unimpaired Runoff**

Table C — Water Year Totals in Thousand Acre-Feet

| Water<br>Year | Unimpaired<br>Runoff <sup>2</sup> | SJRRP<br>Water<br>Year Type <sup>3</sup> | Water<br>Year | Unimpaired<br>Runoff <sup>2</sup> | SJRRP<br>Water<br>Year Type <sup>3</sup> | Water<br>Year | Unimpaired<br>Runoff <sup>2</sup> | SJRRP<br>Water<br>Year Type <sup>3</sup> | Water<br>Year | Unimpaired<br>Runoff <sup>2</sup> | SJRRP<br>Water<br>Year Type <sup>3</sup> |
|---------------|-----------------------------------|------------------------------------------|---------------|-----------------------------------|------------------------------------------|---------------|-----------------------------------|------------------------------------------|---------------|-----------------------------------|------------------------------------------|
| 1901          | 3,227.9                           | Wet                                      | 1933          | 1,111.4                           | Normal-Dry                               | 1965          | 2,271.191                         | Normal-Wet                               | 1997          | 2,817.670                         | Wet                                      |
| 1902          | 1,704.0                           | Normal-Wet                               | 1934          | 691.5                             | Dry                                      | 1966          | 1,298.792                         | Normal-Dry                               | 1998          | 3,160.759                         | Wet                                      |
| 1903          | 1,727.0                           | Normal-Wet                               | 1935          | 1,923.2                           | Normal-Wet                               | 1967          | 3,233.097                         | Wet                                      | 1999          | 1,527.040                         | Normal-Wet                               |
| 1904          | 2,062.0                           | Normal-Wet                               | 1936          | 1,853.3                           | Normal-Wet                               | 1968          | 861.894                           | Dry                                      | 2000          | 1,735.653                         | Normal-Wet                               |
| 1905          | 1,795.4                           | Normal-Wet                               | 1937          | 2,208.0                           | Normal-Wet                               | 1969          | 4,040.864                         | Wet                                      | 2001          | 1,065.318                         | Normal-Dry                               |
| 1906          | 4,367.8                           | Wet                                      | 1938          | 3,688.4                           | Wet                                      | 1970          | 1,445.837                         | Normal-Dry                               | 2002          | 1,171.457                         | Normal-Dry                               |
| 1907          | 3,113.9                           | Wet                                      | 1939          | 920.8                             | Dry                                      | 1971          | 1,416.812                         | Normal-Dry                               | 2003          | 1,449.954                         | Normal-Dry                               |
| 1908          | 1,163.4                           | Normal-Dry                               | 1940          | 1,880.6                           | Normal-Wet                               | 1972          | 1,039.249                         | Normal-Dry                               | 2004          | 1,130.823                         | Normal-Dry                               |
| 1909          | 2,900.7                           | Wet                                      | 1941          | 2,652.5                           | Wet                                      | 1973          | 2,047.585                         | Normal-Wet                               | 2005          | 2,826.872                         | Wet                                      |
| 1910          | 2,041.5                           | Normal-Wet                               | 1942          | 2,254.0                           | Normal-Wet                               | 1974          | 2,190.308                         | Normal-Wet                               | 2006          | 3,180.816                         | Wet                                      |
| 1911          | 3,586.0                           | Wet                                      | 1943          | 2,053.7                           | Normal-Wet                               | 1975          | 1,795.922                         | Normal-Wet                               | 2007          | 684.333                           | Dry                                      |
| 1912          | 1,043.9                           | Normal-Dry                               | 1944          | 1,265.4                           | Normal-Dry                               | 1976          | 629.234                           | Critical-High                            | 2008          | 1,116.790                         | Normal-Dry                               |
| 1913          | 879.4                             | Dry                                      | 1945          | 2,134.633                         | Normal-Wet                               | 1977          | 361.253                           | Critical-Low                             | 2009          | 1,455.379                         | Normal-Wet                               |
| 1914          | 2,883.4                           | Wet                                      | 1946          | 1,727.115                         | Normal-Wet                               | 1978          | 3,402.805                         | Wet                                      | 2010          | 2,028.706                         | Normal-Wet                               |
| 1915          | 1,966.3                           | Normal-Wet                               | 1947          | 1,121.564                         | Normal-Dry                               | 1979          | 1,829.988                         | Normal-Wet                               | 2011          | 3,304.824                         | Wet                                      |
| 1916          | 2,760.5                           | Wet                                      | 1948          | 1,201.390                         | Normal-Dry                               | 1980          | 2,973.169                         | Wet                                      | 2012          | 831.582                           | Dry                                      |
| 1917          | 1,936.2                           | Normal-Wet                               | 1949          | 1,167.008                         | Normal-Dry                               | 1981          | 1,067.757                         | Normal-Dry                               | 2013          | 856.626                           | Dry                                      |
| 1918          | 1,466.8                           | Normal-Wet                               | 1950          | 1,317.457                         | Normal-Dry                               | 1982          | 3,317.171                         | Wet                                      | 2014          | 509.579                           | Critical-High                            |
| 1919          | 1,297.5                           | Normal-Dry                               | 1951          | 1,827.254                         | Normal-Wet                               | 1983          | 4,643.090                         | Wet                                      | 2015          | 327.410                           | Critical-Low                             |
| 1920          | 1,322.5                           | Normal-Dry                               | 1952          | 2,840.854                         | Wet                                      | 1984          | 2,042.750                         | Normal-Wet                               | 2016          | 1,300.986                         | Normal-Dry                               |
| 1921          | 1,604.4                           | Normal-Wet                               | 1953          | 1,226.830                         | Normal-Dry                               | 1985          | 1,135.975                         | Normal-Dry                               | 2017          | 4,395.400                         | Wet                                      |
| 1922          | 2,355.1                           | Normal-Wet                               | 1954          | 1,313.993                         | Normal-Dry                               | 1986          | 3,031.600                         | Wet                                      | 2018          | 1,348.979                         | Normal-Dry                               |
| 1923          | 1,654.3                           | Normal-Wet                               | 1955          | 1,161.161                         | Normal-Dry                               | 1987          | 756.853                           | Dry                                      | 2019          | 2,734.772                         | Wet                                      |
| 1924          | 444.1                             | Critical-High                            | 1956          | 2,959.812                         | Wet                                      | 1988          | 862.124                           | Dry                                      | 2020          | 886.025                           | Dry                                      |
| 1925          | 1,438.7                           | Normal-Dry                               | 1957          | 1,326.573                         | Normal-Dry                               | 1989          | 939.168                           | Normal-Dry                               | 2021          | 521.853                           | Critical-High                            |
| 1926          | 1,161.4                           | Normal-Dry                               | 1958          | 2,631.392                         | Wet                                      | 1990          | 742.824                           | Dry                                      | 2022          | 1059.492                          | Normal-Dry                               |
| 1927          | 2,001.3                           | Normal-Wet                               | 1959          | 949.456                           | Normal-Dry                               | 1991          | 1,027.209                         | Normal-Dry                               |               |                                   |                                          |
| 1928          | 1,153.7                           | Normal-Dry                               | 1960          | 826.021                           | Dry                                      | 1992          | 807.759                           | Dry                                      |               |                                   |                                          |
| 1929          | 862.4                             | Dry                                      | 1961          | 647.428                           | Critical-High                            | 1993          | 2,672.322                         | Wet                                      |               |                                   |                                          |
| 1930          | 859.1                             | Dry                                      | 1962          | 1,924.066                         | Normal-Wet                               | 1994          | 824.097                           | Dry                                      |               |                                   |                                          |
| 1931          | 480.2                             | Critical-High                            | 1963          | 1,945.266                         | Normal-Wet                               | 1995          | 3,876.370                         | Wet                                      |               |                                   |                                          |
| 1932          | 2,047.4                           | Normal-Wet                               | 1964          | 922.351                           | Dry                                      | 1996          | 2,200.707                         | Normal-Wet                               |               |                                   |                                          |

<sup>1</sup>Water year is from Oct 1 through Sept 30, for example the 2010 water year began Oct 1, 2009. Unimpaired Runoff is based on Reclamation calculations, and hypothetical water year types are shown here; actual Restoration water year types are based on the final allocation, which may sometimes differ slightly from the calculated water year total.

<sup>&</sup>lt;sup>2</sup> Also known as "Natural River" or "Unimpaired Runoff into Millerton" – This is the total runoff that would flow into Millerton Lake if there were no dams or diversions upstream. There was a lower level of precision prior to 1945. Friant Dam uses 1.9835 conversion from cfs to AF.

<sup>&</sup>lt;sup>3</sup> The six SJRRP Water Year Types are based on Unimpaired Runoff and are not updated as climatology changes as per the Settlement. Critical-Low= <400 TAF, Critical-High=400-669.999 TAF, Dry= 670-929.999 TAF, Normal-Dry 930-1449.999, Normal-Wet 1450-2500, Wet>2500

# **Appendix D: Final Restoration Allocations and Error**

Table D — History of Restoration Allocations

| Year | Туре                 | Date of<br>Final<br>Allocation<br>Issuance <sup>2</sup> | Unimpaired Runoff Forecast in Final Allocation (TAF) | Restoration<br>Allocation<br>in Final<br>Issuance<br>(TAF) | Observed<br>Unimpaired<br>Runoff on<br>Sep. 30<br>(TAF) | Unimpaired Runoff<br>Forecast Error | Allocation<br>Error |
|------|----------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------|
| 2009 | Interim<br>Flows     |                                                         |                                                      | 261.5                                                      | 1,455.379                                               | _                                   | _                   |
| 2010 | Interim<br>Flows     |                                                         |                                                      | 98.2                                                       | 2,028.706                                               | _                                   | 1                   |
| 2011 | Interim<br>Flows     |                                                         |                                                      | 152.4                                                      | 3,304.824                                               | _                                   | 1                   |
| 2012 | Interim<br>Flows     |                                                         |                                                      | 183                                                        | 831.582                                                 | _                                   | I                   |
| 2013 | Interim<br>Flows     |                                                         |                                                      | 65.5                                                       | 856.626                                                 | _                                   | 1                   |
| 2014 | Restoration Flows    | Mar 3                                                   | 518                                                  | 0 1                                                        | 509.579                                                 | +8.421                              | 0 1                 |
| 2015 | Restoration Flows    | Sep 28                                                  | 327                                                  | 0                                                          | 327.410                                                 | -0.410                              | 0                   |
| 2016 | Restoration Flows    | Sep 30                                                  | 1300.986                                             | 263.295                                                    | 1,300.986                                               | 0                                   | 0                   |
| 2017 | Restoration Flows    | Jul 10                                                  | 4,444                                                | 556.542                                                    | 4,395.400                                               | +48.600                             | 0                   |
| 2018 | Restoration Flows    | May 22                                                  | 1,427                                                | 280.258                                                    | 1,348.979                                               | +78.021                             | +10.503             |
| 2019 | Restoration Flows    | May 20                                                  | 2,690                                                | 556.542                                                    | 2,734.772                                               | -44.772                             | 0                   |
| 2020 | Restoration Flows    | June 19                                                 | 880                                                  | 202.197                                                    | 886.025                                                 | -6.025                              | -1.345              |
| 2021 | Restoration Flows    | June 25                                                 | 529                                                  | 70.919                                                     | 521.853                                                 | +7.147                              | 0                   |
| 2022 | Restoration<br>Flows | May 13                                                  | 1072                                                 | 232.470                                                    | 1059.492                                                | +12.508                             | +1.684              |

<sup>&</sup>lt;sup>1</sup> No water was provided under this Critical-High designation due to necessity for Friant Dam to release flows for the Exchange Contract

<sup>&</sup>lt;sup>2</sup> In 2018 with the completion of Version 2.0 of the Restoration Flows Guidelines, the date of final Restoration Allocation issuance was advanced from September 30 to May (or June under dry hydrologic conditions).

# **Appendix E: Unreleased Restoration Flow History**

Table E1 — URF Distributions (TAF)

| Restoration<br>Year | Gross Volume of URF Sales to Class 1 | Gross<br>Volume<br>of URF<br>Sales to<br>Class 2 | Net<br>Volume<br>of URF<br>Sales to<br>Class 1 | Net<br>Volume<br>of URF<br>Sales to<br>Class 2 | Gross Volume of URF put into Exchanges | Net Volume of URF put into Exchanges | Gross<br>Volume<br>of URFs<br>spilled | Gross<br>Total<br>URF |
|---------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------|-----------------------|
| 2013                | _                                    | _                                                | _                                              | _                                              | 12.694                                 | 12.694                               | _                                     | 12.694                |
| 2014                | 11.219                               | _                                                | 11.219                                         | _                                              | _                                      | _                                    | 0.206                                 | 11.425                |
| 2015                | _                                    | _                                                | _                                              | _                                              | _                                      | _                                    | _                                     | 0                     |
| 2016                | 70.860                               | 56.959                                           | 67.317                                         | 54.111                                         | 18.947                                 | 18.000                               | _                                     | 146.766               |
| 2017                | 5.474                                | 364.967                                          | 5.200                                          | 346.716                                        | 2.491                                  | 2.366                                | _                                     | 372.932               |
| 2018                | 65.249                               | 40.000                                           | 61.986                                         | 38.000                                         | 19.543                                 | 18.565                               | _                                     | 124.792               |
| 2019                | _                                    | 326.954                                          | _                                              | 310.607                                        | 16.298                                 | 15.482                               | 22.509                                | 365.761               |
| 2020                | 43.500                               | _                                                | 41.325                                         | _                                              | 20.002                                 | 19.697                               | _                                     | 63.502                |
| 2021                | _                                    | _                                                | _                                              | _                                              | _                                      | _                                    | _                                     | 0                     |
| 2022                | 75.178                               | _                                                | 71.419                                         | _                                              | 26.951                                 | 25.603                               | _                                     | 102.128               |
| 2023                | _                                    | 165.263                                          | _                                              | 157.000                                        | _                                      | _                                    | _                                     | 165.263               |
| Total               | 271.480                              | 954.143                                          | 258.466                                        | 906.434                                        | 116.926                                | 112.407                              | 22.715                                | 1,365.263             |

Note: 2023 URF actions have not yet begun

Table E2 — URF Revenue for the Restoration Fund

| Restoration<br>Year | Revenue Generated<br>from URF Sales | Revenue Generated from<br>URF Exchanges | Total URF Revenue |  |  |
|---------------------|-------------------------------------|-----------------------------------------|-------------------|--|--|
| 2013                | _                                   | _                                       | _                 |  |  |
| 2014                | \$3,470,650                         | _                                       | \$3,470,650       |  |  |
| 2015                | _                                   | _                                       | _                 |  |  |
| 2016                | \$9,686,790                         | _                                       | \$9,686,790       |  |  |
| 2017                | \$7,038,380                         | _                                       | \$7,038,380       |  |  |
| 2018                | \$6,123,858                         | \$494,504                               | \$6,618,362       |  |  |
| 2019                | \$6,393,286                         | \$306,680                               | \$6,699,966       |  |  |
| 2020                | \$8,922,481                         | \$1,251,630                             | \$10,174,111      |  |  |
| 2021                | _                                   | \$525,000                               | \$525,000         |  |  |
| 2022                | \$13,488,907                        | \$1,909,267                             | \$15,398,173      |  |  |
| 2023                | \$3,611,000                         | _                                       | \$3,611,000       |  |  |
| Total               | \$58,735,352                        | \$4,487,081                             | \$63,222,432      |  |  |

Note: 2023 URF actions have not yet begun

Table E3 — URF Exchanges Returned to the Program (TAF)

| Restoration<br>Year | Volume Returned | Notes                                                |
|---------------------|-----------------|------------------------------------------------------|
| 2013                | _               | _                                                    |
| 2014                | 11.425          | From 2013 URF Exchange with FID, used for 2014 sales |
| 2015                | _               | _                                                    |
| 2016                | _               | _                                                    |
| 2017                | 5.474           | Returned from San Luis Reservoir, 5.200 net URF sold |
| 2018                | 2.129           | Returned from 2018 DEID exchange                     |
| 2019                | 9.000           | Returned to SLR from 2019 AEWSD and LTRID exchange,  |
| 2019                |                 | transferred to CVO for San Luis Unit supply          |
| 2020                | 0.487           | Returned from FID from 2019 exchange                 |
| 2021                | 10.425          | Returned from multi-party 2020 exchange              |
| 2022                | 3.500           | From 2016 URF Exchange with AEWSD                    |
| 2023                |                 |                                                      |
| Total               | 42.440          |                                                      |