Exhibit C

Spawning Habitat Characterization

Fisheries Management Plan: A Framework for Adaptive Management in the San Joaquin River Restoration Program

Information on spawning habitat characteristics of Chinook salmon and other fishes are valuable for guiding restoration activities focused on spawning habitat. This exhibit provides a summary of known spawning criteria of salmon and other fishes to help guide the restoration planning process.

The abundance of Chinook salmon spawning-sized gravels below Friant Dam has been gradually reduced as a result of the upstream dams blocking sediment recruitment and gravel mining from the river terrace and the river channel. An absence of gravel recruitment tends to reduce the amount of useable spawning habitat in three ways. First, without recruitment, uncontrolled high-flow releases scour the gravel from the spawning beds so that they gradually become smaller in length and the depth of the gravel becomes shallower. Second, the smaller gravels tend to be mobilized at the highest rates, which causes the bed surface to armor with large rocks that can be too large for the salmon to move for redd construction. Both the reduction in spawning bed size and the armoring of the bed's surface has the effect of crowding the spawners into the remaining usable spawning areas. Crowding is thought to increase the rate of redd superimposition, when spawners construct new redds on top of preexisting redds, thereby killing or burying some of the eggs in the original redds. The third problem caused by reduced gravel recruitment is that uncontrolled scouring flows also erode sediment from the floodplains. For a thorough description of spawning habitat criteria for spring- and fall-run Chinook salmon, the reader is, the reader is referred to Exhibit A.

Table C-1 summarizes salmonid spawning habitat characteristics, including substrate size, water depths, and velocities, from populations in the Pacific Northwest. Tables C-2 through C-4 present information regarding ratios of sediment size composition identified in three Central Valley studies as suitable for spawning Chinook salmon. The concentration of fine sediment (e.g., sediment with D50 less than 1 millimeter (mm)) in spawning gravels is considered an important factor in egg survival and fry emergence. Raleigh et al. (1986) recommends less than 10 percent fines and other studies indicate less than 12 to 14 percent of gravels should be finer than 1 mm to produce 50 percent incubation success for salmonids (Kondolf 2000).

Table C-5 summarizes spawning habitat characteristics for other fish species, including substrate size, water depths, and velocities, and spawning habitat and egg descriptions. Some categorical data were included in the tables based on text from associated references that lack precise definitions, because they represent the best information.

			Table C-	1.				
		Salm Subs	onid Spawning Habi	tat Characte Water d	eristics enth (m)	Water veloc	rity (m/sec)	
Species (Run)	Location	Range Optimum		Range Optimum		Range Optim		Reference
	-	•	California Central Va	lley Streams				•
Chinook (Fall)	American River	.04 to 30.5	N/A	N/A	N/A	N/A	N/A	20
Chinook (Fall)	Central Valley basin	2.5 to 10.0	2.5 to 5.0	N/A	N/A	N/A	N/A	21
Chinook (Fall)	Merced River	5.0 to 30.0	N/A	N/A	N/A	0.3 to 1.3	N/A	8
Chinook (Fall)	San Joaquin River	N/A	N/A	0.1 to 2.0	N/A	0.15 to 1.0	N/A	17
Chinook (Fall)	Stanislaus River	0.6 to 12.7	N/A	N/A	N/A	N/A	N/A	12
Chinook (Fall)	Tuolumne River	0.8 to 12.8	3.5	N/A	N/A	N/A	N/A	14
Chinook (Spring)	Central Valley basin	2.5 to 10.0	2.5 to 7.5, 5.0 to 10.0	N/A	N/A	N/A	N/A	21
Chinook (Spring)	Chinook (Spring) Clear Creek		5.0 to 10.0	N/A	N/A	N/A	N/A	19
Chinook (Spring)	San Joaquin River	N/A	N/A	0.1 to 2.0	N/A	0.15 to 1.0	N/A	17
Steelhead	Clear Creek	.25 to 15.0	2.5 to 5.0	N/A	N/A	N/A	N/A	19
Steelhead	San Joaquin River	N/A	N/A	0.2 to 1.5	N/A	0.6 to 1.15	N/A	17
			Columbia River and	Tributaries			•	
Chinook (Fall)	Hanford Reach	N/A	N/A	1.2 to 2.6	1.4	0.4 to 1.9	N/A	4
Chinook (Fall)	Hanford Reach	5 to 30	10.0 to 20.0	0.3 to 9.0	1.8 to 7.6	0.4 to 2.0	N/A	18
Chinook (Fall)	Near Wells Dam	N/A	N/A	1.6 to 9.6	5.3 to 7.2	0.4 to 1.2	0.9	9
Chinook (Fall)	Not Specified	N/A	N/A	0.2 to 2.0	N/A	0.8 to 1.1	N/A	3
Chinook (Fall)	Upper	N/A	N/A	0.6 to 4.5	N/A	N/A	N/A	5
Chinook (Fall)	Kalama River	N/A	N/A	0.4	N/A	N/A	0.6	2
Chinook (Fall)	Snake River	2.5 to 15.0	N/A	~1 to 2.0	N/A	~0.5 to 1.2	N/A	6
Chinook (Fall)	Snake River	2.5 to 15.0	N/A	0.2 to 6.5	2.8	0.4 to 2.1	1.1	10
Chinook (Fall)	Snake River	N/A	N/A	4.6 to 7.9	N/A	0.3 to 0.7	N/A	7
Chinook (Fall)	Toutle River	N/A	N/A	0.3	N/A	N/A	0.4	2
		1	1	1			1	1

Exhibit C 2 – November 2010 San Joaquin River Restoration Program

		Substrate size (cm)		Water o	Water depth (m)		Water velocity (m/sec)		
Species (Run)	Location	Range	Mean or Optimum	Range	Mean or Optimum	Range	Mean or Optimum	Reference	
Other River Systems									
Chinook (Fall)	Cambell River, BC	N/A	N/A	0.3 to 0.8	0.6	0.4 to 0.8	0.6	11	
Chinook (Fall)	Nechako River, BC	N/A	N/A	N/A	N/A	0.15 to 1.0	0.5	15	
Chinook (Fall)	Oregon Streams	N/A	N/A	0.4	N/A	N/A	N/A	16	
Chinook (Fall)	Not specific	1.3 to 10.2	N/A	N/A	N/A	N/A	N/A	1	
Salmonids	Not specific	а	N/A	N/A	N/A	N/A	N/A	13	

Table C-1.

Colmonid anowning hebitat abarastariation (contd.)

Sources:

1 Bell, M.C. 1986. Fisheries handbook of engineering requirements and biological criteria. Fish Passage and Development and Evaluation Program, U.S. Army Corps of Engineers, Portland Oregon.

2 Burner, C.J. 1951. Characteristics of spawning nests of Columbia River salmon. Fisheries Bulletin 52:95-110.

3 Chambers, J.S. 1955. Research relating to the study of spawning grounds in natural areas. Pages 88-94 in Washington Department of Fisheries report to U.S. Army Corps of Engineers. Washington Department of Fisheries, Olympia Washington.

4 Chapman, D.W., D.E. Weitkamp, T.L. Welsh, and T.H. Schadt. 1983. Effects of minimum flow regimes on fall Chinook spawning at Vernita Bar 1978-1982. Report to Grant County Public Utility District, Ephrata, Washington, by Don Chapman Consultants, McCall, Idaho, and Parametix, Inc., Bellevue, Washington.

5 Chapman, W.M. 1943. The Spawning of Chinook salmon in the main Columbia River. Copeia 3:168-170

6 Connor, W.P., A.P. Garcia, H.L. Burge, and R.H. Taylor. 1993. Fall Chinook salmon spawning in free-flowing reaches of the Snake River. Pages 1-29 in D.

7 Dauble, D.D., R.L. Johnson, R.P. Mueller, and C.S. Abernethy. 1995 Spawning of fall Chinook salmon downstream of lower Snake River hydroelectric projects, 1994. U.S. Army Corps of Engineers, Walla Walla District, Walla Washington.

8 Gard, M. 2006. Modeling changes in salmon spawning and rearing habitat associated with river channel restoration. Intl. J. River Basin Management Vol. 4, No. 3, 201-211.

9 Giorgi, A.E. 1992. Fall Chinook salmon spawning in rocky reach pool: Effects of three-foot increase in pool elevation. Report to Chelan County Public Utility District, by Don Chapman Consultants, Redmond, Washington.

10 Groves, P.A. and J.A. Chandler. Spawning habitat used by fall Chinook salmon in the Snake River. North American Journal of Fisheries Management 19:912–922.

11 Hamilton, R., and J. Buell. 1976. Effects of modified hydrology on Cambell River salmonids. Technical Report PAC/T-67-20, Canadian Fisheries and Marine Sciences, Vancouver, British Columbia, Canada.

12 Icanberry, J. 2006. Letter to California Department of Fish and Game and California Department of Water Resources regarding AFRP recommended particle size distributions for spawning gravel enhancement projects.

13 Kondolf, G. 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129:262-281.

14 McBain and Trush. 2003. Coarse Sediment Management Plan for the Lower Tuolumne River. Final Report. Pg 77.

15 Neilson, J.D., and C.E. Branford. 1983. Chinook salmon (Oncorhynchus tshawytscha) spawner characteristics in relation to redd physical features. Canadian Journal of Zoology.61:1524-1531.

16 Smith, A. 1973. Development and application of spawning velocity and depth criteria for Oregon salmonids. Transactions of the American Fisheries Society 102:312-316.

17 Stillwater Sciences, 2003. Draft Restoration Strategies for the San Joaquin River. 3.2-10-3.3-3

18 Swan, G.A. 1989. Chinook salmon spawning surveys in deep waters of a large, regulated river. Regulated river: Research and Management 4:355-370.

19 USFWS, SFWO, Energy Planning and Instream Flow Branch Clear Creek (Whiskeytown Dam to Clear Creek Road) Spawning Final Report, August 15, 2007.

20 Vyverberg, K., B. Snider, and R.G. Titus. 1997. Lower American River Chinook Spawning Habitat Evaluation. DFG Environmental Sciences Division. Pg 2-7.

21 Exhibit A

Key: A = Maximum to be 10% of median female salmonid length	cm = centimeters r	m = meters	m/sec = meters per second	N/A = data not available
---	--------------------	------------	---------------------------	--------------------------

ω

Т

Table C-2. Sediment Ratios for Chinook Salmon Spawning Habitat Based on Vyverberg et al. (1997) Study Results

Millimeters	Inches	Percent by volume		
152 to 305	6 to 12	30% or Less		
76 to 152	3 to 6	10% or More		
25 to 76	1 to 3	50% or less		
13 to 25	0.5 to 1	20% or less		
4 to 13	0.16 to 0.5	20% or less		
0.4 to 4	0.015 to 0.16	20% or less		

Source: McBain and Trush. 2003. Coarse Sediment Management Plan for the Lower Tuolumne River. Final Report. Pg 77.

Table C-3.

Sediment Ratios for Chinook Salmon Spawning Habitat Based on McBain and Trush (2003) Study Results

Millimeters	Inches	Inches Standard mix	
64 to 128	2.5 to 5	20%	20%
32 to 64	1.25 to 2.5	35%	30%
16 to 32	5/8 to 1.25	30%	30%
8 to 16	5/16 to 5/8	15%	12%
2 to 8	1/8 to 5/16	0%	8%
	D ₈₄ =	74	74
	D ₅₀ =	35	32

Source: Vyverberg K, B. Snider, and R. G. Titus. 1997. Lower American River Chinook Spawning Habitat Evaluation. DFG Environmental Sciences Division. Pgs. 2-7.

Key: $D_{84} = 84$ th percentile

 $D_{50} = Median$

Table C-4.

Sediment Ratios for Chinook Salmon Spawning Habitat Based on Icanberry (2006) Personal Communication

Millimeters	Inches	Mix
>127	>5	5%
51 to 127	2 to 5	15%
25 to 51	1 to 2	35%
19 to 25	0.75 to 1	15%
13 to 19	0.5 to 0.75	15%
6 to 13	0.25 to 0.5	10%
<6	<0.25	5%

Sources:

1. Icanberry, J. 2006. Letter to California Department of Fish and Game and California Department of Water Resources regarding AFRP recommended particle size distributions for spawning gravel enhancement projects.

2. McBain and Trush. 2003. Coarse Sediment Management Plan for the Lower Tuolumne River. Final Report. Pg 77.

3. Vyverberg K, B. Snider, and R. G. Titus. 1997. Lower American River Chinook Spawning Habitat Evaluation. DFG Environmental Sciences Division. Pgs. 2-7.

Spawning	
Habitat	
Characterization	

	Substrate size (cm)				Sp	awning		
Species	Category	Range	Mean or optimum	Depths (m)	Velocity	Habitat	Egg comments	Source
Green sturgeon	clean sand to bedrock	0.025 to unk *	12.8 to 25.6 *	>3	fast	N/A	adhesive eggs are broadcast	3, 7, 18
White sturgeon	gravel to boulders	0.2 to unk *	N/A	>3	0.6-2.4 m/sec	deep gravel riffles or in deep holes with swift currents and rock bottoms major Sacramento River spawning area are gravel	adhesive, stick to substrate	11, 16, 18, 27
Sacramento sucker	N/A	N/A	N/A	≥ 0.3	N/A	slight depression in riffle gravels	adhere to gravel or debris or bounce along the bottom until they are caught in gravel or washed to a small backwater	18, 19, 26
Sacramento perch	clay and mud to large boulders	0.0001 to unk *	N/A	0.2 to 1.0	N/A	shallow areas with heavy growth of aquatic macrophytes or filamentous algae nearby	eggs deposited into 20- to 75-cm-deep nests	1, 14 ,15, 18, 20
Prickly sculpin	large rock	N/A	N/A	N/A	moderate	build nest underneath large flat rocks	eggs adhere to ceiling of the nest	12, 18
Riffle sculpin	N/A	N/A	N/A	N/A	N/A	underside of rocks in swift riffles or inside cavities in submerged logs	eggs adhere to underside of rocks or inside cavities in submerged logs	2, 17, 18
California roach	N/A	3.0 to 5.0	N/A	shallow	flowing	shallow flowing areas	adhesive, eggs settle into crevices between rocks and adhere	8, 18
Hardhead	N/A	N/A	0.2 to 6.4 *	shallow	N/A	beds of gravel in riffles, runs, or the heads of pools	N/A	13, 18
Hitch	fine to medium gravel	0.4 to 1.6 *	N/A	N/A	N/A	riffles	eggs are not adhesive but sink into gravel interstices	10, 13, 18, 21

 Table C-5.

 Spawning Habitat Characteristics of Other Fishes

		Spa	wning Habita	Ta t Charac	able C-5. teristics o	of Other Fishes (contd	L)					
	Substrate size (cm)			Spawning								
Species	Category	y Range	tegory Range	gory Range	jory Range	ategory Range	Category Range	Category Range Mean o	Category Range Mean or Depths Velocity (m)	Habitat	Egg comments	Source
Sacramento blackfish	N/A	N/A	N/A	shallow	N/A	shallow areas with heavy growth of aquatic plants	eggs extruded onto plants	6, 18, 22, 27				
Sacramento pikeminnow	gravel to rocks	0.25 to unk *	N/A	N/A	N/A	eggs sink to bottom and adhere to rocks and gravel	adhesive, stick to rocks	13, 18, 23, 27				
Sacramento splittail	N/A	N/A	N/A	0.5 to 2.0	N/A	flooded vegetation	adhesive, stick to vegetation and debris	18				
Speckled dace	N/A	N/A	N/A	N/A	N/A	gravel edges of riffles	eggs sink into interstices and adhere to rocks	9, 18				
Tule perch	N/A	N/A	N/A	N/A	N/A	none, live bearers	N/A	4, 5, 18, 24				
Threespine stickleback	N/A	N/A	0.006 to 0.2 *	N/A	N/A	males excavate a shallow pit in sand in beds of aquatic plants and constructs a pile of algae and aquatic plants	eggs are extruded into nest of algae and plant material	18				
Kern brook lamprey	gravel to cobble	0.2 to 25.6 *	0.2 to 6.4 *	N/A	N/A	gravel riffles	N/A	18				
Pacific lamprey	gravel to cobble	0.2 to 25.6 *	0.2 to 6.4 *	0.3 to 1.5	fairly swift	build nest in gravel areas	eggs sink into interstices and adhere to rocks	18				
River lamprey	gravel to cobble	0.2 to 25.6 *	0.2 to 6.4 *	N/A	N/A	they dig saucer-shaped depressions in gravelly riffles	N/A	18				
Western brook lamprey	gravel to cobble	0.2 to 25.6 *	0.2 to 6.4 *	~0.15	N/A	build nest in gravel riffles	N/A	18, 25				
Rainbow trout	N/A	1 to 13	1.6 to 6.4 *	0.1 to 1.5	0.2-1.5 m/sec	N/A	eggs deposited into redds	18				

San Joaquin River Restoration Program

Table C-5. Spawning Habitat Characteristics of Other Fishes (contd.)

Sources:

- 1 Aceituno, M.E., and C.D. Vanicek. 1976. Life history studies of the Sacramento perch, Archoplites interruptus (Girard), in California. Calif. Fish Game 62:5-20.
- 2 Bond, C.E. 1973. Occurrence of the reticulate sculpin, Cottus perplexus, in California, with distributional notes on Cottus gulosus in Oregon and Washington. Calif. Fish Game 59:93-94.
- 3 Brown, L.R. 2000. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California. Environmental Biology of Fishes 57:251-269.
- 4 Bryant, G.L. 1977. Fecundity and growth of tule perch, Hysterocarpus traski, in the lower Sacramento-San Joaquin Delta. Calif. Fish Game 63:140-156.
- 5 Bundy, D.S. 1970. Reproduction and growth of the tule perch, Hysterocarpus traskii (Gibbons), with notes on its ecology. M.S. thesis, Univ. of Pacific, Stockton, Calif. 52 pp.
- 6 Cook, S.F., Jr., J.D. Connors, and R.L. Moore. 1964. The impact of the fishery on the midges of Clear Lake, Lake County, California. Ann. Entomol. Soc. Am. 57:701-707.
- 7 Emmett, R.L., S.A. Hinton, S.L. Stone, and M.E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries, vol. 2: Species life history summaries. Rockville, Md.: NOAA/NOS Strategic Env. Assess. Div. ELMR Rpt. 8. 329 pp.
- 8 Fry, D.H. 1936. Life history of Hesperoleucas venustus Snyder. Calif. Fish Game 22:65-98.
- 9 John, K.R. 1963. The effect of torrential rains on the reproductive cycle of Rhinichthys osculus in the Chiricahua Mountains, Arizona. Copeia 1963:286-291.
- 10 Kimsey, J.B. 1960. Observations on the spawning of Sacramento hitch in a lacustrine environment. Calif. Fish Game 46:211-215.
- 11 Kohlhorst, D.W. 1976. Sturgeon spawning in the Sacramento River, as determined by distribution of larvae. California fish and Game Bulletin 62:32-40.
- 12 Kresja, R.J. 1965. The systematics of the prickly sculpin, Cottus asper: an investigation of genetic and non-genetic variation within a polytypic species. PhD. Dissertation, Univ. British Columbia, Vancouver. 109 pp.
- 13 Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, editors. 1980. Atlas of North American freshwater fishes, North Carolina State Museum of Natural History. Raleigh, North Carolina.
- 14 Mathews, S.B. 1962. The ecology of the Sacramento perch, Archoplites interruptus, from selected areas of California and Nevada. M.A. thesis, Univ. Calif., Berkeley. 93 pp.
- 15 Mathews, S.B. 1965. Reproductive behavior of the Sacramento perch, Archoplites interruptus. Copeia 1965:224-228.
- 16 McCabe, G.T., Jr., and C.A. Tracy. 1994. Spawning and early life history of white sturgeon, Acipenser transmontanus, in the lower Columbia River. NOAA Fish. Bull. 92:760-772.
- 17 Millikan, A.E. 1968. The life history and ecology of Cottus asper Richardson and Cottus gulosus (Girard) in Conner Creek, Washington. M.S. thesis, Unic. Wash., Seattle. 81 pp.
- 18 Moyle, P.B. 2002. Inland fishes of California, 2nd edition. University of California Press, Berkeley.
- 19 Mulligan, M.J. 1975. The ecology of fish populations in Mill Flat Creek: tributary to the Kings River. M.S. thesis, Calif. State Univ., Fresno. 135 pp.
- 20 Murphy, G.I. 1948a. A contribution to the life history of the Sacramento perch (Archoplites interruptus) in Clear Lake, Lake County, California. Calif. Fish Game 34:93-100.
- 21 Murphy, G.I. 1948b. Notes on the biology of the Sacramento hitch (Lavinia e. exilicauda) of Clear Lake, California. Calif. Fish Game 34:101-110.
- 22 Murphy, G.I. 1950. The life history of the greaser blackfish (Orthodon microlepidotus) of Clear Lake, Lake County, California. Calif. Fish Game 36:119-133.
- 23 Patten, B.G., and D.T. Rodman. 1969. Reproductive behavior of the northern squawfish, Ptychocheilus oregonensis. Trans. Am. Fish. Soc. 98:108-111.
- 24 Phelps, A., D. Bartley, and D. Hedgecock 1995. Electrophoretic evidence for multiple mating in tule perch. Calif. Fish Game 81:147-154.
- 25 Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Bulletin 184. Fisheries Research Board of Canada, Ottawa.
- 26 Villa, N.A. 1985. Life history of the Sacramento sucker, Catostomus occidentalis, in Thomes Creek, Tehama County, California. Calif. Fish Game 71:88-106.
- 27 Wang, J.C.S. 1986. Fishes of the Sacramento-San Joaquin estuary and adjacent waters, California: a guide to the early life histories. IEP Tech. Rpt. 9. ca. 800 pp. Kev:
- key: unk = Unknown
- N/A = Data not available
- cm = centimeters
- m = meters
- * = Substrate categories converted to numbers based on Wentworth grain size scale

1

T

References

- Aceituno, M.E., and C.D. Vanicek. 1976. Life history studies of the Sacramento perch, Archoplites interruptus (Girard), in California. Calif. Fish Game 62:5-20.
- Bell, M.C. 1986. Fisheries handbook of engineering requirements and biological criteria. Fish Passage and Development and Evaluation Program, U.S. Army Corps of Engineers, Portland Oregon.
- Bond, C.E. 1973. Occurrence of the reticulate sculpin, Cottus perplexus, in California, with distributional notes on Cottus gulosus in Oregon and Washington. Calif. Fish Game 59:93-94.
- Brown, L.R. 2000. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California. Environmental Biology of Fishes 57:251 269.
- Bryant, G.L. 1977. Fecundity and growth of tule perch, Hysterocarpus traski, in the lower Sacramento-San Joaquin Delta. Calif. Fish Game 63:140-156.
- Bundy, D.S. 1970. Reproduction and growth of the tule perch, Hysterocarpus traskii (Gibbons), with notes on its ecology. M.S. thesis, Univ. of Pacific, Stockton, Calif. 52 pp.
- Burner, C.J. 1951. Characteristics of spawning nests of Columbia River salmon. Fisheries Bulletin 52:95-110.
- Chambers, J.S. 1955. Research relating to the study of spawning grounds in natural areas. Pages 88-94 in Washington Department of Fisheries report to U.S. Army Corps of Engineers. Washington Department of Fisheries, Olympia Washington.
- Chapman, D.W., D.E. Weitkamp, T.L. Welsh, and T.H. Schadt. 1983. Effects of minimum flow regimes on fall Chinook spawning at Vernita Bar 1978-1982.
 Report to Grant County Public Utility District, Ephrata, Washington, by Don Chapman Consultants, McCall, Idaho, and Parametix, Inc., Bellevue, Washington.
- Chapman, W.M. 1943. The Spawning of Chinook salmon in the main Columbia River. Copeia 3:168-170
- Connor, W.P., A.P. Garcia, H.L. Burge, and R.H. Taylor. 1993. Fall Chinook salmon spawning in free-flowing reaches of the Snake River. Pages 1-29 in D.
- Cook, S.F., Jr., J.D. Connors, and R.L. Moore. 1964. The impact of the fishery on the midges of Clear Lake, Lake County, California. Ann. Entomol. Soc. Am. 57:701-707.

- Dauble, D.D., R.L. Johnson, R.P. Mueller, and C.S. Abernethy. 1995 Spawning of fall Chinook salmon downstream of lower Snake River hydroelectric projects, 1994. U.S. Army Corps of Engineers, Walla Walla District, Walla Walla Washington.
- Emmett, R.L., S.A. Hinton, S.L. Stone, and M.E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries, vol. 2: Species life history summaries. Rockville, Md.: NOAA/NOS Strategic Env. Assess. Div. ELMR Rpt. 8. 329 pp.
- Fry, D.H. 1936. Life history of Hesperoleucas venustus Snyder. Calif. Fish Game 22:65-98.
- Gard, M. 2006. Modeling changes in salmon spawning and rearing habitat associated with river channel restoration. Intl. J. River Basin Management Vol. 4, No. 3, 201-211.
- Giorgi, A.E. 1992. Fall Chinook salmon spawning in rocky reach pool: Effects of threefoot increase in pool elevation. Report to Chelan County Public Utility District, by Don Chapman Consultants, Redmond, Washington.
- Groves, P.A. and J.A. Chandler. Spawning habitat used by fall Chinook salmon in the Snake River. North American Journal of Fisheries Management 19:912–922.
- Hamilton, R., and J. Buell. 1976. Effects of modified hydrology on Cambell River salmonids. Technical Report PAC/T-67-20, Canadian Fisheries and Marine Sciences, Vancouver, British Columbia, Canada.
- Icanberry, J. 2006. Letter to California Department of Fish and Game and California Department of Water Resources regarding AFRP recommended particle size distributions for spawning gravel enhancement projects.
- Icanberry, J. 2006. Letter to California Department of Fish and Game and California Department of Water Resources regarding AFRP recommended particle size distributions for spawning gravel enhancement projects.
- John, K.R. 1963. The effect of torrential rains on the reproductive cycle of Rhinichthys osculus in the Chiricahua Mountains, Arizona. Copeia 1963:286-291.
- Kimsey, J.B. 1960. Observations on the spawning of Sacramento hitch in a lacustrine environment. Calif. Fish Game 46:211-215.
- Kohlhorst, D.W. 1976. Sturgeon spawning in the Sacramento River, as determined by distribution of larvae. California fish and Game Bulletin 62:32-40.
- Kondolf, G. 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129:262-281.

- Kondolf, G.M. 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129: 262-281.
- Kresja, R.J. 1965. The systematics of the prickly sculpin, Cottus asper: an investigation of genetic and non-genetic variation within a polytypic species. PhD. Dissertation, Univ. British Columbia, Vancouver. 109 pp.
- Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, editors. 1980. Atlas of North American freshwater fishes, North Carolina State Museum of Natural History. Raleigh, North Carolina.
- Mathews, S.B. 1962. The ecology of the Sacramento perch, Archoplites interruptus, from selected areas of California and Nevada. M.A. thesis, Univ. Calif., Berkeley. 93 pp.
- ———. 1965. Reproductive behavior of the Sacramento perch, Archoplites interruptus. Copeia 1965:224-228.
- McBain and Trush. 2003. Coarse Sediment Management Plan for the Lower Tuolumne River. Final Report. Pg 77.
- McCabe, G.T., Jr., and C.A. Tracy. 1994. Spawning and early life history of white sturgeon, Acipenser transmontanus, in the lower Columbia River. NOAA Fish. Bull. 92:760 772.
- Millikan, A.E. 1968. The life history and ecology of Cottus asper Richardson and Cottus gulosus (Girard) in Conner Creek, Washington. M.S. thesis, Unic. Wash., Seattle. 81 pp.
- Moyle, P.B. 2002. Inland fishes of California, 2nd edition. University of California Press, Berkeley.
- Mulligan, M.J. 1975. The ecology of fish populations in Mill Flat Creek: tributary to the Kings River. M.S. thesis, Calif. State Univ., Fresno. 135 pp.
- Murphy, G.I. 1948a. A contribution to the life history of the Sacramento perch (Archoplites interruptus) in Clear Lake, Lake County, California. Calif. Fish Game 34:93-100.
- ———. 1948b. Notes on the biology of the Sacramento hitch (Lavinia e. exilicauda) of Clear Lake, California. Calif. Fish Game 34:101-110.
- Murphy, G.I. 1950. The life history of the greaser blackfish (Orthodon microlepidotus) of Clear Lake, Lake County, California. Calif. Fish Game 36:119-133.
- Neilson, J.D., and C.E. Branford. 1983. Chinook salmon (Oncorhynchus tshawytscha) spawner characteristics in relation to redd physical features. Canadian Journal of Zoology.61:1524-1531.

- Patten, B.G., and D.T. Rodman. 1969. Reproductive behavior of the northern squawfish, Ptychocheilus oregonensis. Trans. Am. Fish. Soc. 98:108-111.
- Phelps, A., D. Bartley, and D. Hedgecock 1995. Electrophoretic evidence for multiple mating in tule perch. Calif. Fish Game 81:147-154.
- Raleigh, R.F., W.J. Miller, and P.C. Nelson. 1986. Habitat suitability index models and instream flow suitability curves: Chinook salmon. U.S. Fish and Wildlife Service, Biological Report (82)(10.122).
- Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Bulletin 184. Fisheries Research Board of Canada, Ottawa.
- Smith, A. 1973. Development and application of spawning velocity and depth criteria for Oregon salmonids. Transactions of the American Fisheries Society 102:312-316.
- Stillwater Sciences, 2003. Draft Restoration Strategies for the San Joaquin River. 3.2-10-3.3-3
- Swan, G.A. 1989. Chinook salmon spawning surveys in deep waters of a large, regulated river. Regulated river: Research and Management 4:355-370.
- USFWS, SFWO, Energy Planning and Instream Flow Branch Clear Creek (Whiskeytown Dam to Clear Creek Road) Spawning Final Report, August 15, 2007.
- Villa, N.A. 1985. Life history of the Sacramento sucker, Catostomus occidentalis, in Thomes Creek, Tehama County, California. Calif. Fish Game 71:88-106.
- Vyverberg K, B. Snider, and R. G. Titus. 1997. Lower American River Chinook Spawning Habitat Evaluation. DFG Environmental Sciences Division. Pgs. 2-7.
- Wang, J.C.S. 1986. Fishes of the Sacramento-San Joaquin estuary and adjacent waters, California: a guide to the early life histories. IEP Tech. Rpt. 9. ca. 800 pp.

This page left blank intentionally.